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Printed by: Océ Facility Services, Enschede
Copyright © 2003 Roeland Ordelman. All rights reserved.

ISBN 90-75296-08-8
ISSN 1381-3617; No. 03-56 (CTIT Ph.D. Thesis Series)



DUTCH SPEECH RECOGNITION
IN MULTIMEDIA INFORMATION RETRIEVAL

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 10 oktober 2003 om 13.15 uur

door

Roeland Jacobus Frederik Ordelman

geboren op 20 maart 1969
te Oud-Beijerland



Dit proefschrift is goedgekeurd door de promotor,
prof. dr. F.M.G. de Jong,
en door de assistent-promotor,
dr. A.J. van Hessen.



ACKNOWLEDGEMENTS

This thesis reports on research carried out at the Language, Knowledge and
Interaction group (TKI) of the Faculty of Electrical Engineering, Mathematics
and Computer Science at the University of Twente, the Netherlands. The
presented research was funded in part by the Telematics Institute project
DRUID, the European Union project ECHO and the Waterland project. I wish
to acknowledge and thank those people who contributed to the completion
of this thesis.

In particular, I thank my promotor Franciska de Jong for her support, feed-
back and patience. Irrespective of where she was, in the Netherlands, in
Europe or elsewhere, I could expect an immediate response to any of my
questions. Especially her ability to reveal phrasing weaknesses and un-
balanced structures almost at a single glance, was of great help during the
writing stage. In addition, I thank my daily supervisor Arjan van Hessen for
sharing his expertise and knowledge. His unbridled enthusiasm and wide
interests have been very stimulating in the more difficult times during the
process, and a welcome diversion at work, privately and ’on the road’. I am
very grateful for the help provided by David van Leeuwen at TNO Technis-
che Menskunde, especially concerning the ABBOT speech recogniser and
the UNIX operating system, and for providing most of the acoustic mod-
els that were used in this research. Without his support, this research
would not have been possible. Special thanks are due to Paul Melis who
contributed a great deal to the development of the grapheme-to-phoneme
converter and has been of great help during the last stage of the research,
enabling me to run a few experiments that I had already unwillingly labelled
as ’future research’.

I thank my colleagues for their interest, productive discussions and (men-
tal) support. I especially want to express my gratitude for the technical
support provided by Hendri Hondorp and the B&O, technical support and
maintenance group, in particular Fred Gansevles, Jan Veninga and Marc Ber-
enschot. Without them keeping things going (or getting things going again),
this research could not even have been started. Special thanks to Rieks op
den Akker and Mannes Poel who read the manuscript and provided many
valuable comments, Lynn Packwood for wielding the redmarker concerning

5



the English language while reading the manuscript (and for finally convin-
cing me to read those . . . boring Manual Pages when I had just arrived at
CS), my roommate Simon Keizer among others for sharing his tips&tricks,
Charlotte Bijron and Alice Vissers of the secretariat for their care and in-
valuable work in the background, and last but not least, Anton Nijholt for
being around backstage.

I would like to thank the following organisations:

• TNO Technische Menskunde, for the productive collaboration and for
providing the broadcast news acoustic models,

• PCM publishers, for providing the daily feed of newspaper data for
language model training,

• Van Dale Lexicografie, for providing the Van Dale pronunciation lex-
icon, and

• the Nederlandse Omroep Stichting (NOS), for providing the autocues
data of the “NOS Acht uur journaal”.

Finally, special thanks are due to my wife Anne. Her care, patience and
encouragements have been of invaluable support.

Roeland Ordelman

Deventer, September 2003.



Contents

I Multimedia Document Representation 11

1 Introduction 13
1.1 A representation mismatch . . . . . . . . . . . . . . . . . . . . 13
1.2 Solving the representation mismatch . . . . . . . . . . . . . . 14
1.3 Spoken document retrieval . . . . . . . . . . . . . . . . . . . . 17
1.4 Spoken document retrieval for Dutch . . . . . . . . . . . . . . 20
1.5 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Spoken Document Retrieval 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Brief introduction to IR . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Brief introduction to ASR . . . . . . . . . . . . . . . . . . . . . . 34
2.4 The TREC and TDT evaluations . . . . . . . . . . . . . . . . . . 37
2.5 ASR in spoken document retrieval . . . . . . . . . . . . . . . . 38
2.6 SDR for Dutch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7 Research focus and thesis overview . . . . . . . . . . . . . . . 47

II Speech Recognition 49

3 The ABBOT speech recognition system 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 ASR in a probabilistic framework . . . . . . . . . . . . . . . . . 53
3.3 The hybrid RNN/HMM approach . . . . . . . . . . . . . . . . . 55
3.4 Assessment of the speech recognizer . . . . . . . . . . . . . . 60

4 Word pronunciation generation 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Acquiring word pronunciations . . . . . . . . . . . . . . . . . . 65
4.3 Lexical representation . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Development of the G2P converter . . . . . . . . . . . . . . . . 70
4.5 Summary and future work . . . . . . . . . . . . . . . . . . . . . 74

7



5 Acoustic model training 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Research topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 RNN/HMM training procedure . . . . . . . . . . . . . . . . . . 80
5.5 Phone set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7 General discussion and conclusions . . . . . . . . . . . . . . . 86
5.8 Summary and future work . . . . . . . . . . . . . . . . . . . . . 87

6 N-gram language modelling 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 N-gram language models . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Language model smoothing . . . . . . . . . . . . . . . . . . . . 91
6.4 Language model adaptation . . . . . . . . . . . . . . . . . . . . 96
6.5 Evaluation of language models: perplexity . . . . . . . . . . . 98
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Data Collection 101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Newspaper data . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Broadcast news transcripts . . . . . . . . . . . . . . . . . . . . 103
7.4 Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . 105

8 Text Normalisation 107
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Normalisation for LM training . . . . . . . . . . . . . . . . . . . 108
8.3 Normalisation procedures . . . . . . . . . . . . . . . . . . . . . 110
8.4 Normalisation results . . . . . . . . . . . . . . . . . . . . . . . . 120
8.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . 120

9 Vocabulary optimisation 125
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2 Standard vocabulary selection . . . . . . . . . . . . . . . . . . 126
9.3 Vocabulary selection using temporal information . . . . . . 130
9.4 Vocabulary selection using binary prediction . . . . . . . . . 133
9.5 Temporal word selection methods compared . . . . . . . . . 137
9.6 Summary and final remarks . . . . . . . . . . . . . . . . . . . . 151

10 Compound splitting 153
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.2 Splitting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.3 Lexical coverage evaluation . . . . . . . . . . . . . . . . . . . . 165
10.4 Restricted compound splitting . . . . . . . . . . . . . . . . . . 167
10.5 Speech recognition evaluation . . . . . . . . . . . . . . . . . . 176
10.6 Summary and final conclusions . . . . . . . . . . . . . . . . . . 179



11 Speech recognition evaluation 183
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 184
11.3 Baseline experiments . . . . . . . . . . . . . . . . . . . . . . . . 188
11.4 Data selection and language model adaptation . . . . . . . . 194
11.5 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 201

12 Speech recognition:
Summary and future work 203

III Spoken Document Retrieval 213

13 An illustrative SDR experiment 215
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
13.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . 216
13.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
13.4 Conclusions and future research . . . . . . . . . . . . . . . . . 218

14 Summary and conclusions 219
14.1 Original goals of this thesis . . . . . . . . . . . . . . . . . . . . 219
14.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
14.3 Overview of conclusions . . . . . . . . . . . . . . . . . . . . . . 220
14.4 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

A Short description of UT projects involving ASR 227
A.1 OLIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.2 DRUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.3 ECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
A.4 MUMIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
A.5 WATERLAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

B DRUID phone set 229

C List of Names, Institutions and Software 231
C.1 Names and institutions . . . . . . . . . . . . . . . . . . . . . . . 231
C.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

D Speech corpora 235
D.1 TNO-NRC corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
D.2 TNO-BN corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
D.3 Groningen corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 235
D.4 Speech Styles corpus . . . . . . . . . . . . . . . . . . . . . . . . 236
D.5 Spoken Dutch Corpus (CGN) . . . . . . . . . . . . . . . . . . . . 236



10

Bibliography 248

Summary 248

Samenvatting (in Dutch) 251

Curriculum Vitae 253

SIKS Dissertation series 254

Index 259



Part I

Multimedia Document
Representation

11





Chapter 1

Introduction

This thesis addresses the development and application of Dutch speech re-
cognition as a tool for searching Dutch multimedia content in a multimedia
information retrieval environment. This chapter explains the role of speech
recognition for the purpose of information retrieval and the motivation be-
hind the research described in this thesis, summarised in the last sections of
this chapter.

1.1 A representation mismatch

As data storage capacities grow to nearly unlimited sizes thanks to ever
ongoing hardware and software improvements, we can preserve anything
we want, given that it can be stored digitally. But assuming that the inten-
tion of data storage is to use (portions of) it some later time, the data must
also be searchable in one way or another: it must be possible to formulate
a particular information need related to the stored data and to retrieve this
information from it.

With the huge quantities of data being stored today, efficient and suc-
cessful retrieval is becoming more and more complicated. Given an inform-
ation request, a search facility has to provide preferably all relevant items in
the data collection (it should have a high recall), leaving aside non-relevant
items (have a high precision) within an acceptable time limit. This requires
sophisticated search algorithms that do not put too heavy demands on
processing time. The research in Information Retrieval (IR), by Salton and
McGill (1983) defined as the research “concerned with the representation,
storage, organisation and accessing of information items”, aims at finding
the optimal solutions for the fulfilment of these requirements.

It is not these huge data quantities alone that complicate IR research.
As storage capacity is hardly a limiting factor anymore, all kinds of digital
documents with different semiotic formats (texts, sounds, graphics, etc.),
or even documents that combine different formats as in multimedia doc-
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14 CHAPTER 1. INTRODUCTION

uments (typically videos), are being digitised and stored on a large scale
as well. Searching non-text based types of data automatically, is far more
complicated than searching the traditional text-oriented data types, basic-
ally because there is a representation mismatch that must be solved. This
is depicted in Figure 1.1: a searching process can be described as trying
to find a match between the information need, formulated in a query and
represented in a query representation, and a collection of documents, rep-
resented in a document representation that is normally referred to as an
index. This index is a compressed version of the documents capturing all
important information contained in the documents. Using natural language
to formulate an information need in a query, is from a user’s perspective
the most evident choice. With multimedia content, the representation of
a natural language query does not match the representation of the docu-
ments (images in pixels, audio in samples). To enable automated searching
in these documents, the representation of the query and of the document
collection have to be put in agreement: by converting the document collec-
tion to the query representation (e.g., to text), by adjusting the query to the
document representation (e.g., to images) or by converting both document
and query representation to an intermediate representation (e.g., to sound
units). Solving representation mismatches by converting document repres-
entations is one of the main issues in multimedia information retrieval.

1.2 Solving the representation mismatch

Circumventing a representation mismatch, some search engines on the In-
ternet, such as Google, support the search for images by looking at the file
names of images (such as “computer.png”), on the reasonable assumption
that the file names reflect something of the content of the image. Anyone
who has tried to find images on the Internet this way, may have noticed
that this approach is not very successful. An approach reflecting a way of
“looking” at the images themselves to see if they are relevant for a given
query, requires the translation of the picture into a textual representation
that can be matched with the text-based query representation. But as re-
search in image retrieval has shown (see e.g., Eakins and Graham, 1999,
for an extensive review), so called content-based image retrieval (CBIR) is
extremely complicated. Therefore, the process is often reversed. Instead of
adjusting the document to the query representation, the query is adjusted
to the document representation: an example image acts as a query and the
matching process is done at the image level (using for example similarity
searches based on colour histograms). This type of searching is often re-
ferred to as “query-by-example” in the field of IR. However, one needs an
example image first to find other images, which may impose a problem in
itself.

Multimedia documents are often accompanied by some kind of textual
information; at the least a file name or a title and maybe even a short de-
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scription of the item. Using this basic information as document represent-
ations can already be helpful in locating relevant documents. However, re-
search in Multimedia Retrieval made clear that searching for specific pieces
of information within documents as visualised in Figure 1.2—which is es-
pecially useful when the data is as unstructured as in multimedia data—
requires a more detailed representation of the information contained in
the documents. To enable direct access to relevant parts of the document,
having time information available (where exactly can a piece of information
be found in the document) is of crucial importance. It has already been
noted that creating a detailed representation on the basis of images (video
frames) is complicated. But although information contained in multimedia
documents can be present in both audio (speech, music, sounds) and video
(images), the audio alone can already provide useful information about the
document’s content and give clues about the presence of certain images or
video fragments. Regarding non-spoken audio, for example the detection of
the cheering of a crowd at a particular point in a video may indicate where
a goal has been scored in a soccer match. Likewise, a particular tune can
mark the start of a commercial or broadcast news show (List et al., 2001)
and even music can carry useful information (Pfeiffer, 1999)1: for example,

1Note that music is not the primary retrieval source as is the case in Music Information
Retrieval where for example melodies are sought in music (Goodrum and Rasmussen, 2000)
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fast music usually accompanies video scenes with a lot of action, whereas
slow music is typically used for love-scenes.

But undoubtedly the most informative component of the audio stream
is the spoken audio. When at particular time slots in a video, the words
“Chagall”, “exhibition” and “gallery” are mentioned, it is likely that at that
point a video fragment of the Chagall exhibition is included. By using auto-
matic speech recognition (ASR) to convert existing speech into text, detailed
textual multimedia document representations can be created. As speech
recognition systems label recognised words with exact time information
as a standard accessory, detailed searching within multimedia documents
comes within reach: by deploying the time-codes produced by the ASR sys-
tem, relevant video fragments can directly be accessed.
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1.3 Spoken document retrieval

”Information is in the audio, video is for entertainment” - Richard
Schwartz, BBN Technologies, Multimedia Retrieval Video-Confer-
ence, University of Twente, 1999

The retrieval of multimedia documents using the spoken audio parts is
commonly referred to as spoken document retrieval (SDR) or alternatively,
speech retrieval. SDR is an important research area within multimedia in-
formation retrieval (MMIR) research, aiming at the disclosure of multimedia
documents. Strictly speaking, in this area the focus of SDR is not on spoken
documents but on the spoken audio contained in multimedia documents.
Although a wide range of MMIR applications in many different fields can
be thought of—ranging from video mail retrieval (e.g., Brown et al., 1996)
to systems for managing meetings2, an illustrative and typical example of
a field that can benefit from advances the research in MMIR and SDR is
the broadcast sector. A typical application would be a search facility for
the video archives to enable journalists to search for fragments that can
be inserted in news items or documentaries. Broadcast companies produce
streams of multimedia data on a daily basis and as there is a tendency to
digitise as much as possible, more and more recordings are being stored
in databases. Moreover, mainly for preservation reasons, the digitisation of
older material and even historical archives is often in progress (retrospect-
ive digitisation).

To provide means for searching, such archives have traditionally been
annotated with human-generated metadata. Metadata is usually defined as
data about data. In the broadcast sector, administrative metadata, such
as rights metadata (who is the legal owner of a video item) and technical
metadata (such as the format of a video item), is an important metadata
type, but descriptive human-generated metadata, including the title, dura-
tion, a short content description and a list of names and places that are
mentioned in the video item, can also be preserved with the video items.
Although the information density in this type of metadata is usually low,
it can nevertheless be very helpful for locating specific video items in an
archive. This type of information is therefore sometimes referred to as
“bibliographic” or “tombstone information” among librarians3. However,
locating specific parts or shots within videos remains time consuming: the
usual way to find pieces of re-usable archive material, had always been
scrolling manually through a large amount of data (sometimes literally a
basket of video tapes) that matched some broader search criteria. If more

2See for example the M4 project: Multi-Modal Meeting Manager. Started on 1 March 2002,
and is supported by the EU IST Program (project IST-2001-34485). URL: http://www.dcs.
shef.ac.uk/spandh/projects/m4/

3Note that besides administrative and descriptive metadata, a third type of metadata is
often distinguished: information about the structure and organisation of a multi-part digital
object that can be encoded MPEG-7/21 (Goldman et al., 2003)
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detailed information could be added to the metadata fields of the items
in a multimedia archive, such as descriptions of the video shots and tran-
scripts of spoken parts in the video4 as depicted in Figure 1.3, the metadata
would provide better means for locating interesting sections. As mentioned
before, crucial additional information with respect to information located
within documents is time information: where exactly in the documents can
specific information be found. For cost efficiency reasons, adding such de-
tailed information manually is not an option for huge amounts of data.
In order to generate detailed multimedia metadata, researchers have been
exploring other options. One of these is employing related text sources5,
such as the auto-cues of a broadcast news show, press cuttings, produc-
tion scenarios and teletext subtitling.

But the greatest challenge in MMIR research is the exploration and de-
velopment of a great variety of audio and image analysis tools to pro-
duce automatically generated metadata from the multimedia content. The
most obvious examples are speech and image analysis tools but for an op-
timal performance of the these tools, additional pre-processing and post-
processing tools (e.g., speech/non-speech detection in speech recognition)
are indispensable. In addition, there is more information in the audio and
video tracks than speech and images alone. With the appropriate tools,
shot boundaries (video) or speaker (audio) changes for example, can be de-
tected and can provide valuable information. Ultimately, the bundling of
these tools should enable an automatic and detailed annotation of multi-
media material, as if the material had really been “listened to” or “looked
at.” Sometimes even adding information that manual annotations usually
do not provide.

Many tools, alone or in combination, are already deployed effectively for
the indexing of multimedia archives: well-known are the Carnegie Mellon’s
Informedia project6 (e.g., Witbrock and Hauptmann, 1998) and the THISL
project (Robinson et al., 1999). The BBN system (Broadcast News Navig-
ator, Maybury et al., 1997) and Virage7 are examples of commercial systems
that use ASR techniques for multimedia retrieval. In the DARPA8 sponsored
benchmark tests for video retrieval, such as performed in the Text REtrieval
Conference (TREC), the speech recognition component in these multimedia
retrieval environments has proven to be a most valuable tool (cf. Baan et al.,
2002). A lot of useful information can be found in the spoken audio con-
tained in a multimedia document and by deploying the state-of-the-art in
current speech recognition technology, a considerable part of information
can successfully be recovered.

4Transcriptions of spoken language recordings are sometimes interpreted as the fourth
metadata type, next to administrative, descriptive and structural metadata

5When such text sources are not available in computer readable format, OCR techniques
can be applied (see e.g., Harman and Voorhees, 1997))

6http://www.informedia.cs.cmu.edu
7http://www.virage.com
8Defense Advanced Research Projects Agency (DARPA)



20 CHAPTER 1. INTRODUCTION

1.4 Spoken document retrieval for Dutch

At the University of Twente a wide range of issues related to (multimedia)
information retrieval have been studied (recent studies include Hiemstra,
2001; Petkovíc, 2003; Velthausz, 1998; De Vries, 1999). However, at the
start of the research described in this thesis, SDR had only sparsely been
addressed. Some experience was obtained with SDR for English and French
in the Olive project (De Jong et al., 1999). With the DAS+ project, the ex-
ploration of SDR for the Dutch language had been started (Kraaij et al.,
1998). Extending this research themes for Dutch content is necessary in
order to keep up with the international technological advances and state-
of-the-art in this field, to ensure that the increasing amount of information
being stored in Dutch multimedia and spoken-word collections remains ac-
cessible. To prevent the huge amounts of Dutch data practically get lost
as there are no adequate means for searching these, spoken document re-
trieval research for the Dutch language is regarded to be of vital import-
ance both from an economical and historical perspective. Furthermore, in
order to be able to participate in future collective research initiatives on an
international level in the domain of spoken-word audio collections, such
as recently promoted by the EU-US Spoken Word Archive Group (Goldman
et al., 2003), expanding Dutch SDR research is of crucial importance.

The primary aim of the research described in this thesis, was there-
fore to bridge the technological gap between international state-of-the-art
in SDR and the lack of experience of SDR for Dutch, and to explore the
wide range of issues concerning spoken document retrieval, specifically for
the Dutch language. Addressing Dutch SDR, was originally pushed by a
number of multimedia retrieval projects, listed in Appendix A, aiming at
the disclosure of a variety of multimedia collections. Solving the repres-
entation mismatch between the spoken audio parts in the collections and
textual query representations, was regarded as indispensable for success-
ful retrieval of the multimedia documents in these projects. The spoken
document retrieval research described in this thesis took place in a mul-
timedia information retrieval context, but it must be noted that the larger
part of this research can be just as well interpreted with a focus on the
(mono-media) spoken audio alone.

With Dutch SDR in mind, a suitable Dutch speech recognition system
that could be used for the creation of suitable representations of the spoken
audio contained in the multimedia documents, had to be identified or de-
veloped. As the characteristics of the task domain highly determine the
requirements of a speech recognition system, choosing a target domain
with a reasonably limited scope that could nevertheless be regarded as a
representative application domain for spoken document retrieval was a ne-
cessary first step. Considering the fact that broadcast news (BN) has been
extensively used as a benchmark domain for both international speech
recognition research and SDR research, Dutch television broadcast news
was an obvious choice for the first explorations of Dutch SDR. In the
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Focus cond. descr. example
F0 Clean planned speech television news
F1 Clean spontaneous speech television discussions
F2 F0+F1 narrow-band telephone interview
F3 F0+background music tune in background
F4 F0+background noise applause
F5 F0+non-native dialect British-English
FX Any other combination spontaneous non-native

Table 1.1: Focus conditions in the Hub4 “broadcast news” speech recog-
nition evaluations.

BN domain, large variations in audio quality (microphones, bandwidth of
the channels), speaker characteristics (multiple speakers, speech styles,
native/non-native) and background are observed. The speech in the BN
domain is often referred to as “found” speech. In the Hub49 benchmark
tests, several focus conditions were distinguished, listed in Table 1.1, to en-
able a better error analysis. The conditions in broadcast news place great
demands on the speech recognition system and typically a large vocabu-
lary speaker independent continuous speech recognition (LVCSR) system is
deployed for SDR tasks in this domain. In an SDR application, a speech
recognition system should not produce too many errors as such a system
would deliver very poor document representations that in turn will severely
damage retrieval performance. At best, the document representations are
exact reproductions of the words in the spoken audio, unrealistically pro-
duced by a perfect speech recognition system. The annual SDR evaluations
at TREC (Text REtrieval Conference, see e.g., Garofolo et al., 2000), showed
that LVCSR systems with a word error rate (WER) in the broadcast news
domain between 35–40%, produced document representations that were
accurate enough for retrieval. So, the envisaged Dutch speech recognition
system for a Dutch multimedia retrieval system in the broadcast news do-
main should be capable of reaching a performance of at least 35–40% WER
to enable successful retrieval.

In general, an important factor for reaching an adequate speech recog-
nition performance for a certain language, is literally the “state-of-the-art”
in speech recognition for that language that in turn is largely determined
by the amount of speech (recognition) research that has been undertaken
for that language. A large part of the speech recognition research has tradi-
tionally been focused on the English language which gave the development
of English speech recognition systems a head start over systems for other
languages. Also, the research in spoken document retrieval concentrated

9Hub4, with its focus on broadcast news, was an extension of the DARPA speech recogni-
tion research program based on journalistic dictation.
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mainly on retrieval systems based on the English language. As the devel-
opment of a speech recognition system for a specific language requires
substantial investments in large corpora for system training and language
specific research effort, especially for languages with fewer speakers, catch-
ing up with the performance of English systems is challenging.

For the Dutch language, a substantial amount of research has been ad-
dressed to Dutch speech (recognition) itself, both at academic and commer-
cial sites. However, obtaining a ready-to-use, “open source” and speaker in-
dependent LVCSR speech recognition system that could be adapted to the
special needs in SDR, proved to be difficult. At academic sites, the availab-
ility of a full-scale Dutch LVCSR system with a reasonable overall perform-
ance was usually not required as ASR research focused on specific parts of
ASR technology, such as the acoustic modelling part (e.g., Van den Heuvel
et al., 2003; De Veth, 2001) or the pronunciation generation part (e.g., Kes-
sens, 2002; Wester, 2002), to name a few recent research topics. This type
of research can well be evaluated with a minimal or partial set-up of an ASR
system. Commercial Dutch speaker-independent LVCSR systems were not
available either10. In addition, systems developed at commercial sites, usu-
ally are largely “black boxes” for commercial reasons, leaving only few or no
possibilities to alter the system for research purposes. To fulfil the needs
of the multimedia retrieval projects, the development of a “new” speaker
independent LVCSR system for Dutch, suitable for both SDR research and
LVCSR research in general, was undertaken. The purpose of this develop-
ment was to deploy the system in a multimedia retrieval framework for
gaining experience with Dutch speech recognition as a tool for the creation
of multimedia document representations and especially, for investigating
Dutch specific speech recognition issues in the context of retrieval.

1.5 This thesis

Clearly, a Dutch LVCSR system is crucial for research in Dutch spoken doc-
ument retrieval and an important part of this thesis addresses the devel-
opment of such a system. As retrieval performance is related to speech
recognition performance, minimising the error of the overall system is an
important goal. The eventual speech recognition performance depends on
the sum of the performance of numerous system parts that all need to
be fine-tuned and investigated separately in the context of the task do-
main. However, as addressing all system parts extensively was not possible
within the available time, the development of the Dutch LVCSR system was
restricted in two ways. Firstly, the broadcast news domain was chosen as
the primary task domain, but the different speech conditions in this do-
main as listed in Table 1.1 on page 21, were not investigated exclusively.

10At least there were no indications that Dutch speaker-independent LVCSR systems had
been developed for commercial exploitation. It could well be however that within R$D labor-
atories Dutch LVCSR research was/is investigated.



1.6. THESIS OVERVIEW 23

All conditions were merely piled and treated as one single “broadcast news”
condition. Secondly, each system part was not be investigated in full depth
as the goal was to reach a reasonable system performance within a short
time. This strategy was also necessary to enable a successful contribution
to the MMIR projects that served as an application framework for this re-
search. A few issues in Dutch large vocabulary speech recognition were ex-
pected to have a relatively strong impact on both speech recognition (and
retrieval) performance, including compound splitting, vocabulary selection
and language modelling. As these issues had not been fully investigated in
the context of Dutch LVCSR yet, they were chosen for more detailed invest-
igation.

In spite of the limitations, the set-up of a LVCSR system for Dutch can be
regarded as a useful starting point for further speech recognition research,
either to investigate means to improve the “baseline” system as described
in this thesis, or to investigate its application in domains other than the
broadcast news domain. As broadcast news is only one interesting example
of multimedia data that could be subject for retrieval, the enrolment of
a LVCSR system to other application domains is an especially important
prerequisite to make sure that the increasing amount of information being
stored in a variety of Dutch multimedia data remains accessible.

In summary, the goals of the research described in this thesis are:

• to provide a starting point, baseline and framework for the invest-
igation of a wide range of issues concerning spoken document re-
trieval, specifically for Dutch, deployed in a multimedia retrieval en-
vironment,

• to give a detailed specification of the development of a LVCSR system
for Dutch, focused on the broadcast news domain, and thereby,

• to provide a baseline LVCSR system for Dutch enabling further re-
search in this field,

• to make a contribution to Dutch LVCSR research by addressing some
important issues in Dutch LVCSR: compound splitting, vocabulary se-
lection and language modelling, and

• to demonstrate Dutch spoken document retrieval with an example
SDR evaluation,

1.6 Thesis overview

In the next chapter, the concept of Spoken Document Retrieval is discussed
in depth, eventually resulting in a detailed formulation of the research and
development steps undertaken. Part II of this thesis describes the set-up
and optimisation of the Dutch speech recognition system. Finally in Part III,
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different speech recognition configurations that were described in the pre-
vious part, are used in an illustrative spoken document retrieval evaluation,
followed by a general discussion of the issues addressed in this thesis and
a detailed overview of interesting future work both in the field of Dutch
large vocabulary speech recognition and Dutch spoken document retrieval.



Chapter 2

Spoken Document Retrieval

The history of spoken document retrieval and the speech recognition tech-
niques that have been applied in this field through the years are described
in this chapter. Furthermore, this chapter discusses how the current, inter-
national, state-of-the-art in spoken document retrieval can be adopted for
spoken document retrieval for Dutch. As a reference, a basic introduction to
information retrieval and speech recognition is provided first.

2.1 Introduction

Research in Spoken Document Retrieval (SDR) is concerned with the repres-
entation of spoken audio in video and/or audio documents using speech re-
cognition techniques, for application in information retrieval (IR). The goal
in SDR is to gain access to the information that is “encoded” in the speech
by “decoding” the speech signal to a suitable format —typically words—
that can be used as a searchable representation of such documents. Sec-
tion 2.5 describes how SDR research evolved from creating relatively simple
document representations using a limited set of keywords, to the construc-
tion of detailed document representations using full-scale decoding of the
speech signal. This evolution in SDR became possible due to the progress
made in automatic speech recognition (ASR) research during the past dec-
ade. In the last section of this chapter it is argued that in order to enable
SDR for Dutch, a system for Dutch ASR is required that reaches the inter-
national state-of-the-art, of which the performance level has set the agenda
for the research described in this thesis.

Before addressing the evolution of SDR, a basic introduction to IR and
ASR is provided first. The concepts of information retrieval are fully dis-
cussed in a vast amount of literature and extensive introductions to the
subject can be found in for example Rijsbergen (1979) and Salton and
McGill (1983). In Section 2.2 a brief introduction to information retrieval
is provided for readers who are unfamiliar with the basic concepts of in-

25
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formation retrieval. Section 2.3 gives a brief introduction to ASR and is not
meant to be exhaustive. Only those topics that can be regarded as relevant
for a good comprehension of the general problems in spoken document
retrieval are introduced. For a more detailed introduction to ASR see for
example Jelinek (1997) or Jurafsky and Martin (2000).

2.2 Brief introduction to IR

In this thesis, information retrieval is viewed according to the scenario de-
picted in Figure 2.1. It is assumed that there is a certain collection of doc-
uments, and that a user requests information about the existence and loc-
ation of documents or fragments of documents in the collection that are
relevant to some information need of the user. The user’s request is for-
mulated in a query using natural language—one or more words, phrases
or even complete sentences—that is processed by an information retrieval
system in order to suggest a number of documents that match this request.
These suggestions are returned as pointers or references (e.g., hyperlinks).
The retrieval system ranks these pointers according to the system’s inter-
pretation of the degree to which the suggestions match the request. The
user eventually has to satisfy his information need by actually consulting
the suggested items. Note that such an information retrieval system is not
a so-called question-answering system (Voorhees, 2000) that attempts to
provide a specific fact that the user is looking for, or to give an answer
to a query. An information retrieval system as described above, typically
consists of the following components:

• Document representation component

• Query formulation component

• Comparison or matching component

The document representation component deals with the conversion of the
document collection to a format that is suitable for the envisaged retrieval
process. From an engineering point of view, the purpose of the decoding
component is to enable an efficient comparison of queries and documents
in large document collections, and a real-time response to the user’s query.
This can be achieved by compressing the documents into a so-called index,
which is usually a list of words (index terms) in an inverted file structure
(Rijsbergen, 1979, page 53), where each of the indexing terms is linked
to one or more documents if that term also occurs in these documents.
The indexing terms may be a pre-defined set of keywords (e.g., based on a
thesaurus) or simply all words in the document collections.

From an information retrieval point of view, the function of the docu-
ment representation component of an IR system (depicted in Figure 2.2), is
firstly to provide a document representation that can be matched against
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Figure 2.1: Information retrieval scenario: given a document col-
lection, a user has some information need that is formulated in a
query. This query is processed by an information retrieval system
that suggests a number of documents that match the query. The
user evaluates these suggestions to see whether his information
need can satisfied



28 CHAPTER 2. SPOKEN DOCUMENT RETRIEVAL

the representation of the query, typically a textual representation given
natural language queries. A second function of this component is storing
efficiently all significant information about the documents that can be used
in the comparison component, including the removal of redundant inform-
ation, and optionally, adding extra information (see section 2.2.2). Given a
textual representation, the processes within this component include:

• tokenisation, such as the removal of punctuation marks,

• the removal of words with few document distinguishing abilities from
the indexing terms, such as high frequent words and specific function
words, specified in a stop list,

• morphological normalisation, such as stemming and compound split-
ting, and

• adding synonyms, such as “Verenigde Naties (English: United Nations)”
given “VN”.

Furthermore, search terms can be weighted in the document representation
component, according to one of the many term weighting algorithms that
have been developed. The weight of a term reflects the document distin-
guishing abilities of the term. The well-known tf.idf weighting scheme for
example, deploys the frequency of a word in a document (term frequency
tf ) and the number of documents a term occurs in (inverse document fre-
quency: idf ). According to this scheme, a word that is very frequent in a cer-
tain document but also in the entire collection has only few distinguishing
abilities and will receive little weight, whereas a word with a high frequency
in a document and a low overall frequency, will receive more weight. These
term frequencies and inverse document frequencies can also be stored in
the index.

In the context of multimedia retrieval, creating a document represent-
ation that is comparable with the query representation in terms of rep-
resentation units is a significant procedure. As described in the introduct-
ory chapter of this thesis, the representation format of a natural language
query (text) does not match the representation format of images (pixels)
and audio (samples). Therefore, the representation of the query and the
document collection has to be put in agreement by adjusting the docu-
ment representation to the query representation, by adjusting the query to
the document representation or by converting both document and query
representation to an intermediate representation. Note that the conversion
of representations also plays a role in the context of Cross-language IR
(Sheridan and Ballerini, 1996), where query and/or documents are conver-
ted to a target/intermediate language, thesaurus based IR, that maps the
terms in documents and/or queries to a set of thesaurus terms (Spink and
Saracevic, 1997), and cross-modal IR, which exploits the semantic relations
between the various data streams in multiple media streams (Owen and
Makedon, 1999; Westerveld, 2002).
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Figure 2.2: Document representation component of an IR system.
If required, first the document representation is altered to pre-
vent a representation mismatch. Given a textual representation,
redundant information is removed and optionally extra inform-
ation is added in a pre-processing step that precedes the actual
term weighting and indexing process.
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Figure 2.3: Query representation component of an IR system that
broadly follows the procedures in the document representation
component: representation conversion if required, pre-processing
and term weighting. Optionally feedback can be provided to the
user given successive query formulations
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In a broad sense, the query formulation component of an IR system,
depicted in Figure 2.3, involves both the creation of a query representa-
tion and performance of an interactive dialog with the user. The process of
creating a query representation is equal to the process involved with the
document representation component, including the definition of the basic
representation unit, pre-processing and term weighting, based for example
on the frequency of terms in the query. The dialog part, optionally includes
feedback to the user given successive query formulations (referred to as
relevance feedback).

In the comparison component of the system, a matching function com-
pares the query representation with the document representations in the
index and provides a list of documents, usually ranked according to relev-
ance.

2.2.1 Models of IR and term weighting

The exact characteristics of the three components of an information re-
trieval system described above, are highly determined by the information
retrieval model that is chosen. In principle, the information retrieval mod-
els provide the theoretical grounds for different approaches to the retrieval
problem. The Boolean model was the leading model from commercial re-
trieval systems until the mid 1990’s (Hiemstra, 2001). This model does
not apply term weighting, nor does it provide a ranking of retrieved doc-
uments. In this model sets of documents are created by combining query
terms with Boolean operators (AND, NOT and OR). Another example of an
information retrieval model is the vector space model (Salton and McGill,
1983). In this model both the document representations and the query are
represented as vectors in a high dimensional Euclidean space where each
term is assigned a separate dimension. The similarity between a document
and a query vector is typically measured by computing the cosine of the
angle between both vectors. The probabilistic approach to information re-
trieval (e.g., Robertson and Spärck-Jones, 1976), stresses the importance
of the ranking of suggested documents according to their probability of
relevance. This probability is in principal based on the relative sizes of
the subsets of documents that are indexed using the words in the query,
but many probabilistic approaches have been suggested that extend the
basic idea, for example by incorporating term frequency in the model. In
the language model-based information retrieval model (Hiemstra, 2001), a
unigram language model is created for each document in the collection,
typically the result of interpolating a document language model with a gen-
eral collection-wide language model. By computing for each document the
probability that this document generates the query, a probability-ranked
list of documents can be generated.

In practice, most information retrieval implementations are only in the-
ory based on these models of information retrieval. The exact implement-
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ations are often inspired by intuitions and based on extensive studies on
their behaviour in test collections. In general, term weighting is regarded
as an important factor for the performance of an information retrieval sys-
tem and a large number of weighting schemes, such as the tf.idf weight-
ing scheme that was already mentioned earlier, have been proposed dur-
ing the last 25 years. An example of a information retrieval implement-
ation that uses tf.idf weighting is the popular Okapi algorithm1 This al-
gorithm is based on an extended probabilistic model theory that takes
term frequency and document length into account (Robertson and Walker,
1994). Robertson and Walker experimented with a number of weighting
algorithms which led to the frequently used Okapi-BM25 algorithm. The
algorithm as formulated in (Robertson et al., 1998) was also used for the
information retrieval experiments described in this thesis (Chapter 11 and
Chapter 13).

2.2.2 Query and document expansion

A technique applied in information retrieval that is specifically worth men-
tioning in the context of spoken document retrieval, is query expansion
(see e.g., Jourlin et al., 1999). As the term already suggests, this technique
simply adds words to the query in order to improve retrieval performance.
In query expansion the document search is basically performed twice. After
an initial run, a selection of the top N most relevant documents gener-
ates a list of terms ranked by their weight (e.g., a tf.idf weight). The top T
terms of this list are then added to the query and the search is repeated us-
ing the enriched query. Query expansion can be performed using retrieved
documents from the same collection, or using retrieved documents from
another (parallel) corpus. In the former case, query expansion is referred
to as blind relevance feedback, in the latter it is called parallel blind relev-
ance feedback. For example, as the speech recognition system in a spoken
document retrieval task may have produced errors or may have missed im-
portant words, it can be useful to apply parallel blind relevance feedback
using a corpus without errors—such as a manually transcribed corpus—in
order to reduce retrieval misses due to speech recognition errors. In other
approaches to query expansion, compound words are split (Pohlmann and
Kraaij, 1996), geographic names are expanded (e.g., “The Netherlands” to
“Amsterdam, . . . , Zaandam”) and hyponyms of unambiguous nouns are ad-
ded (e.g., “flu, malaria, etc.” are added given “disease”) using thesauri and
dictionaries (Jourlin et al., 1999). Also the opposite approach, document ex-
pansion is applied to alleviate the effect of speech recognition errors on
retrieval performance (see e.g., Singhal and Pereira, 1999a). However, this
approach does not work that well when story segmentation is unknown.

1The Okapi algorithm is named after the system developed at the Polytechnic of Cent-
ral London in the early 1980’s, further developed at City University London and Microsoft
Research.
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2.2.3 Retrieval performance evaluation

The evaluation of information retrieval systems deserves special attention.
The first step in the evaluation procedure involves the development of an
information retrieval test collection, consisting of a set of documents, a
number of queries and a definition of the query results, the list of docu-
ments the information retrieval should provide given a query, referred to
as relevance judgements. These “answers” to the query cannot be exclus-
ively defined and are highly subjective. For one user, a document may be a
perfectly acceptable suggestion given a certain query, whereas for another,
the relevance is only small. Moreover, relevance judgements for document-
query pairs may change according to the provided instructions, or even
the time of day. Therefore, the persons who must provide the judgements
must be selected and instructed carefully in order to perform an unbiased
evaluation. For the test collections that were developed for the TREC confer-
ence, a number of “judges” (among others former CIA officers) were hired
to provide relevance assessments. These judges were instructed to make a
binary decision on the relevance of each document given a query, and to
prevent that information from other documents influenced their decisions.
As for large test collections no judge can read and judge every document
in the collection, only a sample of the collection is judged. For the TREC
conference, the top 100 documents that were retrieved by participating
systems and by judges performing manual and semi-automatic searches,
referred to as the pool, were judged.

The performance of an information retrieval system is typically evalu-
ated by looking per query at both precision, the fraction of retrieved doc-
uments that are actually relevant, and recall, the fraction of all relevant
documents that were actually retrieved:

�

�

�

�

precision = r
n r: number of relevant documents retrieved

n: number of documents retrieved
recall = r

R R: total number of relevant documents

The overall system performance is then determined by averaging preci-
sion and recall, over all queries. Often, precision of a system given various
levels of recall is determined by fixing recall levels, for example ranging
from 0% to 100% with 10% intervals, resulting in a recall-precision graph
that typically has a negative slope: increasing the recall results in a decrease
of precision.

A retrieval evaluation using judgements as described above is costly
to develop. Therefore, an alternative evaluation method can be applied,
called the known item retrieval task, that simulates a user seeking a partic-
ular, half-remembered document in the collection. The goal is to generate
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a single correct document for a query rather than a set of relevant doc-
uments, which eliminates the need for expensive relevance assessments
(Voorhees et al., 1997). In this evaluation method, systems are evaluated by
looking at the rank at which the target documents were found.

2.3 Brief introduction to ASR

Speech recognition systems convert an acoustic signal to a sequence of
words as depicted in Figure 2.4. A first step in the recognition process
is usually to convert the acoustic signal to a set of spectral features (fea-
ture vectors) that capture the characteristics of the speech signal that are
most important for speech recognition. In the next step, an acoustic model,
trained on some example data (discussed in detail in Chapter 3), translates
the stream of feature vectors into a stream of phones: the smallest units
of speech of which words are composed. In order to find the words in this
stream of phones, a vocabulary is needed, a dictionary that contains words
that are expected to occur in the data, with their corresponding phonetic
representation. Given that the conversion of a long string of phones into
a set of words can be highly ambiguous—there are no word boundaries,
the actual pronunciation of a word may deviate from the standard pro-
nunciation, the recognition may have produced errors— grammars or lan-
guage models, trained on example text data, may be used to disambiguate
or restrict possible word candidates (discussed in detail in Chapter 6). The
acoustic models and language models are trained on example data that has
a close resemblance with the data for the intended task domain.

There are speech recognition systems in different flavours and many
different configurations are conceivable. Some of these configurations are
relatively simple, some are extremely complex. The choice of a speech re-
cognition configuration highly depends on the characteristics of the spe-
cific task. Some of the more important parameters that characterise a task
are:

Speech type

• Isolated words versus continuous speech. In specific tasks, users
are expected to say only one word or phrase (as in telephone ser-
vices) or are required to pause briefly between words (as in older
dictation systems2). In such cases, isolated-word recognition is
applied. The advantage of this type of speech recognition is that
as word-boundaries are known, the search space can be narrowed
down substantially. In contrast, continuous speech recognition,
has a hard job finding these word-boundaries but is able to deal
with fluent and dictated speech.

2Modern dictation systems are able to deal with continuous speech
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Figure 2.4: Simplified overview of a speech recognition process

• Read speech versus spontaneous speech. Spontaneous speech is
usually less distinct and contains more disfluencies then read
speech, which makes it harder to recognise correctly. Moreover,
it is much more difficult to create language models that approx-
imate spontaneous speech. Language models are usually trained
on written text corpora that do not contain ungrammatical sen-
tences and disfluencies that are frequently encountered in spon-
taneous speech.

Speaker dependency

• Speech is highly variable. Not only is there a large difference in
speech across speakers, but within speakers as well: the speak-
er’s physical and emotional state influences his speaking rate,
pronunciation and voice quality. Across-speaker variabilities may
be caused by dialect, gender or socio-linguistic background. When
only one single speaker is intended to use a speech recognition
system, one single acoustic model could be trained that models
the speech of that speaker in all its variations. As this is vir-
tually impossible, a general acoustic model trained on multiple
speakers is often adapted to one single speaker using samples
of a speaker recorded during a speaker enrolment session, as is
common practice with most modern dictation systems. When a
speech recognition system has to deal with multiple speakers,
across-speaker variabilities are modelled using a large amount
of data from many different speakers. In specific tasks, it can be
worthwhile to train separate gender-dependent models.

Acoustic conditions
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• Bandwidth. The frequency bandwidth of the recorded speech sig-
nal is an important factor in speech recognition as it determ-
ines how much spectral information can be used to character-
ise speech sounds. In narrow-band speech—typically telephone
speech—only the frequency range of 300–3400 Hz is available.
The absence of lower-frequency components prevents for exam-
ple a proper pitch analysis, whereas accurate detection of certain
phones (as fricatives) rely on the presence of the high-frequency
components. Speech recognition for narrow-band speech is there-
fore much more difficult than for wide-band speech that also cov-
ers frequency ranges of 50–300 Hz and >3400 Hz. In tasks with
multiple bandwidths, often some sort of band detection is per-
formed (for example by computing the ratio of the average en-
ergy below and above 4kHz) so that bandwidth specific acoustic
models can be applied.

• Noise and non-speech events. Environmental noise cannot always
be banned completely. But as speech recognition systems are
very sensitive to interferences of the speech signal, a lot of ef-
fort is taken either to reduce background noises as well as pos-
sible, or to filter them out of the speech signal. Furthermore,
audio segments containing non-speech can introduce errors. As
a speech recogniser itself cannot decide whether a particular
sound is speech or just noise (or music), it may output words as
a recognition result anyway. For specific applications, a speech/-
non-speech detection facility can therefore be crucial for useful
recognition performance.

Vocabulary requirements.

• Every task places its specific demands on vocabulary size. For
some tasks a small vocabulary (up to a few hundred) is sufficient,
particularly when the task can be split up into a number of sub-
tasks, each with its own vocabulary. Other tasks require larger
vocabularies, ranging from a few thousand (medium size) up to
tens of thousands (large vocabulary) of words. With vocabularies
becoming larger, the amount of possible sentences that can be
constructed with these words grows explosively so that increas-
ingly sophisticated grammars or language models are needed to
restrict the search space. Also, word confusions are more prob-
able as pairs of words that differ only in a few phones get more
frequent in larger vocabularies.

For every speech recognition task these parameters have to be taken into
account to determine a system configuration that is appropriate. The para-
meters that apply for retrieval tasks can put heavy demands on the config-
uration of a speech recognition system. Typical spoken documents such as
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broadcast news or voice messages contain continuous speech, often from
multiple speakers who are not limited in the words they use. Also, acoustic
conditions can be sub-optimal (telephone messages, live reports, music in
the background). In order to deal with these difficult conditions different
speech recognition approaches have been proposed. In the next sections an
overview is given of these speech recognition approaches in Spoken Docu-
ment Retrieval, but first two conferences that have played a mayor role in
the evolution of SDR, TREC and TDT, are described in brief.

2.4 The TREC and TDT evaluations

By providing a solid infrastructure for the development and evaluation of
SDR technology along with a forum for the exchange of knowledge between
speech recognition and information retrieval communities (Garofolo et al.,
2000), the annual NIST sponsored Text REtrieval Conference (TREC) has
boosted SDR research considerably. In 1998, the TREC SDR Track was ini-
tiated as a successor to the Confusion Tracks, which aimed at the retrieval
of documents whose true content has been confused or corrupted in some
way (Voorhees et al., 1997). The SDR Tracks continued until 2000 (TREC-
9) after which the spoken document retrieval in the broadcast news do-
main was declared “solved” (Garofolo et al., 2001). Although this does not
mean that the spoken document retrieval problem in itself is solved—TREC
focussed on one particular domain, using speech recognition for English
only—it is clear that substantial progress in SDR had been made in only a
few years.

Also in the DARPA Topic Detection and Tracking evaluation (Wayne,
2000) speech transcripts are a primary source. In contrast with a TREC-
type retrieval system that does retrospective retrieval (the collection is
queried after it is formed), TDT-type systems perform online recognition
and retrieval in real time-longitudinal tasks, keeping track of topics, (events
of interest), in a constantly expanding collection of multimedia stories. The
TDT program defined five main tasks (Wayne, 2000):

• Story Segmentation: detect changes between topically cohesive sec-
tions

• Topic Tracking: keep track of stories similar to a set of example stor-
ies

• Topic Detection: build clusters of stories that discuss the same topic

• First Story Detection: detect if a story is the first story of a new, un-
known topic

• Link Detection: detect whether or not two stories are topically linked
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Because in this TDT type of tasks online recognition must be employed (re-
cognition takes place as the audio is recorded), decoding speed is important
in order to keep up with continuously incoming data streams.

2.5 ASR in spoken document retrieval

Using speech recognition technology to convert spoken audio into text for
retrieval purposes, may seem a rather obvious solution. However, in or-
der to obtain reasonable retrieval results, a speech recognition system has
to produce reasonably accurate transcription of what was actually spoken.
When a system produces lots of errors, successful retrieval will be doubtful.
When it produces perfect transcripts, retrieval will resemble the perform-
ance of retrieving text documents. How accurate exactly speech recognition
should be for acceptable retrieval performance was uncertain at the outset
of SDR research, although some experience was gained with the retrieval of
corrupted documents (TREC-5, e.g., Harman and Voorhees, 1997). The ap-
proach therefore was to aim at the highest performance possible. However,
apart from being accurate, the speech recognition system has to perform
the actual decoding within an acceptable time limit. With large data collec-
tions, decoding time grows linearly. Moreover, there is a trade off between
the complexity of the recognition system and decoding speed: complex al-
gorithms can be plugged in to improve recognition performance at the ex-
pense of processing time, or the other way around, a relatively light-weight
system can save weeks of processing. It must be noted however that the
rapid evolution and the decreasing costs of processor power lowered the
significance of processing speed. On the other hand, because of the increas-
ing amount of data appearing on information channels, processing speed
is said to keep its relevance, especially when decoding has to be performed
online, in real-time longitudinal tasks. Such tasks require that just created
documents, such as today’s latest broadcast news show, are searchable im-
mediately or soon after the actual broadcast. In the TDT evaluations, this
type of tasks is simulated.

Producing an acceptable performance within reasonable time limits has
been outside the reach of even the most powerful speech recognition sys-
tems until very recently. Only since the mid-nineties could speech recogni-
tion be deployed increasingly successfully for spoken document retrieval
tasks due to improvements in speech recognition algorithms but especially
thanks to increasing amounts of computer power and memory becoming
available at lower costs.
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2.5.1 SDR using related text sources

Circumventing the speech recognition problem, the ORL Medusa multime-
dia retrieval system (Brown et al., 1995) exploited as a benchmark for purely
speech-based retrieval, teletext subtitles. These come almost for free with
a considerable amount of broadcast material. Teletext subtitles were re-
ceived from the English 888 subtitles pages along with time information
which, as mentioned before, is crucial to link the teletext subtitles to the
video segments. The subtitles contained a nearly complete transcription of
the words spoken in the material and provided an excellent information
source for indexing. When available, deploying external information for the
representation of spoken documents can therefore be a practical solution
for a considerable amount of broadcast material. Heavy-weight speech re-
cognition and possible retrieval performance degradation caused by speech
recognition errors, can be avoided.

But in cases where subtitles or other external information sources are
not available, the evident alternative is to use speech recognition techno-
logy to provide information about the documents in the collection. Differ-
ent speech recognition approaches have been proposed. Each approach can
be characterised by two important features: the main representation unit of
the spoken audio in the document (document representation)–which can be
words or phones for example–and the moment at which the actual decoding
takes place, either before or at retrieval time. The specific advantages and
disadvantages of these features are discussed in the next paragraphs that
cover three main classes of speech recognition techniques in SDR: keyword
spotting, sub-word based retrieval and large vocabulary speech recognition.

2.5.2 SDR using keyword spotting

Because of its relative simplicity, earliest attempts to deploy speech recog-
nition technology in SDR made use of word spotting techniques to search
for relevant documents in audio material (e.g., Foote et al., 1995; James,
1995; Rose et al., 1991). A keyword spotter searches the audio material
for single keywords. An acoustic model is used to recognise phones and
a small vocabulary of keywords with phonetic transcriptions provide the
link to the keywords. Keyword searches are often weighted using a simple
grammar (such as a Finite State Grammar). Weighting can be uniform for all
keywords or be based on the probability distribution of the keywords in the
database. Normally the spotter has a facility to reduce incorrect keyword
hypotheses (false alarms). This may be one single “garbage” model match-
ing all non-keywords or even a vocabulary of non-keywords.

A speech recogniser in keyword-spotter mode has the advantage of
being relatively light-weight as it does not use a computationally costly
language model. Therefore, keyword spotting was a feasible approach at
times when computer power was still limited. In early systems, keywords
were usually carefully fixed in advance. After the keyword spotting process
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was performed, the spoken documents in the collection could be repres-
ented in terms of the keywords found in the documents. Although, this
method worked well within a very restricted domain (such as the detection
of weather reports (Carey and Parris, 1995)) or topic identification in speech
messages (Rose et al., 1991), the fixed set of keywords often appeared to
be too limited for realistic tasks.

As computer power increased, keyword spotting could also be deployed
at retrieval time, enabling the search for any keyword given by the user,
provided that the phonetic transcriptions of the keywords could be looked
up in a phonetic dictionary or successfully generated automatically by a
grapheme-to-phoneme (G2P) converter or text-to-speech tool. However, key-
word spotting at retrieval time may result in unacceptable delays in re-
sponse time, especially when the document collection is large. To avoid
this, James and Young (1994) proposed an alternative word spotting tech-
nique called phone lattice scanning (PLS). In PLS word spotting, phone lat-
tices are created and searched for the sequence of phones corresponding
to a particular search term. In this way keywords do not need to be chosen
a priori so that any set of words can be searched, and as the phone lattices
are created before retrieval time, delays in response time can be minimised.

But using keyword spotting for retrieval purposes has disadvantages.
Retrieval will suffer from false alarms and missed keywords and espe-
cially short words are hard to spot (see e.g., Van Leeuwen et al., 1999)) as
keyword spotting relies solely on acoustic information. Also, homophone
occurrences as in “In januari is de vorst ingevallen (English: The frost came
in January)” and “In januari is de vorstin gevallen (English: The queen fell
in January)” cannot be solved without a language model or stress inform-
ation. This attracted SDR researchers to use large vocabulary speech re-
cognition systems (LVCSR, discussed below) that can benefit from the re-
strictive power of language models or to combine other speech recognition
techniques with word spotting. Jones et al. (1996) and Brown et al. (1996)
for example used LVCSR as main recognition technique and fell back to
keyword spotting when out-of-vocabulary words occurred. In Ekkelenkamp
et al. (1999) triphone matching (see paragraph “Sub-word unit representa-
tions” below) served as a fast but not very precise first retrieval step, after
which keyword spotting was applied as a slower but more accurate retrieval
refinement step.

In spite of its disadvantages, keyword spotting can be regarded as a use-
ful technique for the retrieval of spoken documents. The focus of the SDR
community however shifted toward large vocabulary speech recognition in
the late nineties due to massive research efforts resulting in substantial im-
provements in speech recognition performance in SDR. But utilising word
spotting techniques, either alone or in combination with other speech re-
cognition techniques, remains a good choice for a variety of applications.
Especially when heavy-weight speech recognition is not feasible or useful.
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2.5.3 SDR using sub-word unit representations

While keyword spotting and LVCSR approaches largely focus on words as
representation units of the decoded speech in the document, an alternat-
ive category of SDR approaches use sub-word unit representations such as
phones, phone n-grams, syllables or broad phonetic classes (e.g., Ng, 2000;
Smeaton et al., 1998) to deal with the retrieval of spoken documents. Sub-
words are generated by either taking the output of a phone recogniser dir-
ectly (phones) or by post-processing this output to acquire phone N-grams
or other representations. A significant characteristic of sub-word based ap-
proaches is that the document is represented in terms of these sub-word
units. At retrieval time, query words are translated into a sequence of sub-
word units which are matched with sub-word document representations.

Note that keyword spotting using a phone lattice as described earlier,
resembles this type of approaches in the way that the query is translated
into a sequence of sub-word units, namely phones, that are matched with
the phone representation of the documents. However, keyword spotting
aims at matching particular sequences of phones in the document repres-
entations themselves in order to map them to words, whereas in sub-word
based approaches, the matching is done using sub-word indexing terms.

As a phone recogniser requires an acoustic model only to generate se-
quences of phones, the recognition process can do with a relatively simple
decoding algorithm. Compared to LVCSR with computationally expensive
language models, the decoding step of a sub-word based approach is there-
fore much faster. Also, by deploying a phone recogniser, collecting large
amounts of domain specific text data (that may be unavailable) for language
model training can be circumvented, which reduces training requirements
to the acoustic model training. Finally, as the phone recogniser does not
need a vocabulary of words, a sub-word based approach is less sensitive to
out-of-vocabulary words, provided that the query words can be converted
to the sub-word representations using grapheme-to-phoneme conversion
tools.

However, depending solely on acoustic information, phone recognition
systems tend to produce higher error rates, resulting in less accurate docu-
ment representations. To compensate for the decrease in precision, hybrid
approaches have been proposed, such as the one described in Ekkelenkamp
et al. (1999) for example where the sub-word based approach served as a
pre-selection step for a word spotting approach.

2.5.4 SDR using LVCSR

As speech recognition performance evolved to a more and more acceptable
level in the late nineties, the application of large vocabulary speech recogni-
tion systems in SDR became more evident. As at the outset of the TREC SDR
tracks, speech recognition performance was expected to be still relatively
poor, it was questionable whether performance was good enough for reas-
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onable retrieval performance. However, word error rates fell between 35%
and 40% at TREC-6 which appeared to be good enough for acceptable re-
trieval results in a known-item retrieval task, simulating a user seeking one
particular document. Already at TREC-7, where the known-item retrieval
task was replaced by the more difficult so called ad-hoc retrieval task of
searching multiple relevant documents from single topics, speech recogni-
tion performance was improved substantially—the University of Cambridge
HTK recognition system produced error rates below the 25% (Johnson et al.,
1998)—and almost all retrieval systems performed reasonably well. Also at
TREC-7, evidence could be provided for the assumption that better speech
recognition performance will also result in better retrieval performance:
the Cross Recogniser tasks, in which participating systems ran a retrieval
experiment on speech recognition transcripts coming from different sys-
tems, showed a near-linear relationship between word error rate and re-
trieval performance (Garofolo et al., 2001). The same tendency was found
at TREC-8.

In the TREC SDR tracks word-based systems outperformed other ap-
proaches. Out-of-vocabulary words did not appear to be a major issue:
Robinson et al. (1999) reported an average OOV rate of 1% given a 65K
word lexicon over the ad-hoc topics of TRECs 3-7. Processing time had
not been a bottleneck either for the relatively heavy LVCSR systems that
participated: although at TREC-8/9 the document collection was huge (557
hours of audio) and the processing (recognition and retrieval) had to be
done within five months, no processing time problems were reported. Re-
cognition error rates even dropped in comparison with the smaller TREC-7
collection. It must be noted however that there were no restrictions in the
hardware or number of processors that were used. To illustrate, the HTK
system of Cambridge University, the best performing system on TREC-8
with 20.5% WER, ran in 13×RT on a Pentium III 550MHz processor running
Linux (Johnson et al., 2000), which is relatively slow, especially when ap-
plied in a real time-longitudinal speech recognition task: it would take 13
days to process a single audio stream of one single day (24 hours). There-
fore, in these types of tasks (or when the amount of data is simply too large
in a retrospective task) speech recognition systems are optimised for speed
at the cost of a certain degree of performance.

The word error rates of the speech recognition systems participating
at TREC were surprisingly low given the relatively difficult broadcast news
transcription task. At TREC-8, word error rates based on a 10 hour subset
of the TREC-8 collection, nearly all fell between 20% and 30%. Apart from
the increasing amount of computer power that has become available since
the outset of SDR research in the mid nineties, a number of factors have
contributed to these performance improvements. Firstly, TREC and other
annual speech recognition related bake-off meetings3, such as TDT and the

3“Bake-off” meetings were originally organised around the ARPA speech research pro-
grams. ARPA funded and other speech recognition systems were evaluated against each
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ARPA Hub4 ASR task, provided an ideal framework for comparing system
architectures and performances in order to reach optimal configurations
for specific tasks. Moreover, as large amounts of (English) training data
became available along with these evaluation meetings, research sites have,
at least partly, been released from the laborious task of collecting training
data for acoustic modelling and language modelling.

Next to substantial performance improvements that were achieved by
refining acoustic modelling and language modelling for different speech
recognition architectures, some SDR specific techniques were introduced
that are especially worth mentioning:

Rolling language models: to deal with OOV words due to the daily chan-
ging focus in broadcast news, the vocabulary and language models
are continuously (e.g., once a week) adapted to recent news events
(Auzanne et al., 2000; Johnson et al., 2000).

Gender, bandwidth, speaker change and speech/non-speech detection: mul-
tiple detection and unsupervised adaptation techniques have success-
fully been devised to improve speech recognition accuracy in various
ways. To improve acoustic model accuracy, gender, bandwidth and
speaker change detection is performed along with the use of appropri-
ate acoustic models for the respective conditions. Speech/non-speech
detection has been applied to prevent a speech recognition system
from producing (nonsense) recognition output on non-speech (e.g.,
Gauvain et al., 2000; Johnson et al., 2000).

Query/document expansion: when query words actually exist in a specific
document, but the automatically generated transcript of the docu-
ment missed these words due to speech recognition errors, this doc-
ument cannot be retrieved. To compensate for such errors, query or
document expansion techniques have been applied that add relevant
words to the query or document to reduce the query/document mis-
match. These additional relevant words are often obtained using a
parallel text-based corpus, for example by running the query on the
text-based corpus first, adding a selection of the words from theN top
ranked documents of the retrieval result to the query next, and finally
running the expanded query on the original document collection (see
e.g., Abberley et al., 1999; Singhal and Pereira, 1999b).

Given the good performance of most SDR systems at TREC-9, the ad hoc
retrieval task in the broadcast news domain was declared to be a “solved
problem”. Summarising some general conclusions that could be noted from
the TREC SDR tasks (see e.g., Garofolo et al., 2000; Johnson et al., 2000):

other for a special speech recognition task. Such competitions provide an excellent oppor-
tunity to evaluate and, if appropriate, borrow techniques that have proven to reduce error
rates (Jurafsky and Martin, 2000).
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• the better the performance of the speech recognition systems, the
better retrieval performance in general will be4

• (participating) systems all perform well enough to allow standard text
retrieval approaches to be successfully applied,

• word-based systems outperform systems based on sub-word units
such as phones, and

• out-of-vocabulary words do not present a significant problem in the
task domain.

The TREC SDR tracks have demonstrated that applying SDR techniques for
the creation of multimedia/audio document representations is a valuable
tool in the retrieval process of multimedia and audio documents. However,
as TREC focussed on English spoken audio in only a single domain, broad-
cast news, there are still a number of issues that need to be addressed in
SDR for other domains and other languages, as will be discussed in the next
sections.

In Figure 2.5, possible SDR strategies for a given task domain and/or
language that were described above are summarised, ranging from the use
of speech recognition techniques (LVCSR, keyword spotting and sub-word
unit based approaches) to the use of related text sources such as teletext
subtitling, autocues and other types of metadata.

2.6 SDR for Dutch

In the previous section it was concluded that SDR performance in the TREC
broadcast news retrieval task has grown to a more than adequate level. But
although the problem might be solved for North-American broadcast news,
a number of issues are still to be solved for other domains and for non-
English languages, especially regarding the most important component of
an SDR application, the speech recognition system. Furthermore, although
the development steps that need to be undertaken to allow for SDR using
LVCSR may be well-known, the actual implementation of a LVCSR system
may not be straightforward, as will be shown below.

2.6.1 General issues in LVCSR development

A first, seemingly trivial requirement for SDR for whatever language or task
domain, is the possession of preferably “open-source” speech recognition
software that allows for adaptations given language specific or task spe-
cific characteristics. Specifically for research purposes, the adaptability of

4However in TREC-9 the difference in retrieval performance using query expansion,
between the reference transcripts (12% WER), HTK (20% WER) and SPRACH (30%) was rel-
atively small.
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Figure 2.5: Possible SDR strategies: LVCSR, keyword spotting,
phone recognition and using related text sources

an ASR system is of crucial importance. Commercial systems are usually
specifically tailored for dictation tasks or telephone command and con-
trol services. Often only marginal adaptations are possible. As developing
an ASR system from scratch is usually not an option, the use of existing,
open-source software is the most obvious choice. As will be discussed in
more detail in the next chapter, identifying such software can be difficult
enough.

Given that appropriate software is available, large annotated, language
and task specific, corpora are required for both acoustic model and lan-
guage model training. Such corpora cannot always easily be obtained and
as creating suitable collections requires substantial human effort, these are
costly to develop. The huge amounts of data that were made available for
English with the LVCSR bake-off meetings, are definitely not in reach for
Dutch. Evidently, the number of speakers for a given language highly de-
termines the availability of training data. For a language with fewer speak-
ers, the commercial exploitation of corpora, and the development of sys-
tems that are created using these corpora, will be less profitable.

Next to speech recognition software and training corpora, auxiliary tools
are needed for the successful deployment of a LVCSR system. To allow for
the flexible construction of large speech recognition dictionaries for ex-
ample, an accurate and extensive phonetic dictionary, preferably together
with a grapheme-to-phoneme (G2P) processing tool for automatic word
pronunciation, is indispensable. But accurate phonetic dictionaries with a
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large coverage are seldom freely available and costly to develop. Robust
G2Ps cannot be found easily either and their development usually requires
the availability of existing phonetic dictionaries. Furthermore, the large
amounts of data and the relatively complex procedures that are involved in
the development of a complete LVCSR system, require the use of databases
and the availability of a number of specific tools, for example for scoring,
language model training and annotation. Most of these tools are however
open-source and can be obtained for free from a variety of sources.

Research topics focussed on obtaining the best possible speech recog-
nition performance in the broadcast news domain. Although the TREC SDR
tracks showed that successful SDR does not require a perfect speech recog-
nition performance, it was acknowledged that targeting at a performance
between 20% and 30% WER in the BN domain as was obtained by participat-
ing English systems in TREC, would not be entirely realistic given the avail-
able expertise, resources and man-power. Therefore, next to experiments
aiming at performance improvement that follow logically the development
of a LVCSR system, such as determining the optimal parameter settings
in language model training, research topics were identified that could con-
tribute to Dutch LVCSR research, instead of spending time purely on the
implementation of techniques that have already proven to be successful in
international ASR research.

2.6.2 Project setting

Addressing these issues has been a prerequisite for the development of a
Multimedia Retrieval environment for Dutch video archives as was taken up
in a series of multimedia retrieval projects: DRUID, ECHO, MUMIS and Wa-
terland (see Appendix A for a short description). The DRUID project aimed
at the development of tools for the indexing and retrieval of multimedia
content. An important part of the project was dedicated to exploring the
area of speech based retrieval for Dutch. At the outset of DRUID in 1998
some experience with SDR was available from the OLIVE project in which
the speech recognition for French and German was developed by LIMSI
(De Jong et al., 1999, 2000) and the take up of Dutch LVCSR recognition
was an obvious next step.

Whereas in the DRUID project the focus is on the broadcast news do-
main, which in international SDR research has often served as a benchmark
for system evaluations (TREC, Hub4), the focus in the ECHO project was
on the retrospective digitisation and disclosure of historical national video
archives. The variety of material in these archives, both acoustically and
from a language modelling point of view, imposes additional requirements
on both acoustic and language modelling. The audio quality of the videos
recorded in the forties and fifties for example, is very poor. Also, due to the
ancient vocabulary that is used in the mid-twentieth century, a substan-
tial increase in out-of-vocabulary words and language model mismatches
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is generated. Finally, the different domains (documentary type of items
in various domains, propaganda items, news items) and document char-
acteristics (no strict story partitioning as in broadcast news) require funda-
mental adaptations to the processing scheme as opposed to the standard
broadcast news approach.

The MUMIS project brings up other types of problems. Here the aim
was to use speech recognition transcripts5 for the indexing and retrieval of
soccer matches from the Euro-2000 league. In this domain, recordings are
very noisy due to stadium background noises which complicates speech re-
cognition. Also, the limited and item-specific vocabulary (names of players,
typical actions) and the a-typical type of speech (commentator’s speech), re-
quire non-standard methods for vocabulary selection and language model
training. Moreover, the standard LVCSR approach may not be the most ap-
propriate solution in this domain.

Given these project setting, a speech recognition environment had to be
constructed suitable for research purposes in the domain of SDR. It was
decided to focus on the development of a Dutch LVCSR system, as deploy-
ing such a system as a keyword spotter or phone recogniser still remains
an option, enabling the implementation of an SDR approach using keyword
spotting or sub-word units respectively. It was chosen to take the English
ABBOT system as a starting point and to port it to Dutch by coupling it
with Dutch language models and acoustic models.

2.7 Research focus and thesis overview

The focus of research described in this thesis, was to set a baseline for
investigating Dutch LVCSR and SDR. A major part will be devoted to the
description of the necessary development steps to reach at this baseline.
In addition, first explorations of this baseline as a LVCSR and SDR research
framework is reported.

This thesis is structured as follows. Whereas the current part (Part I) is
meant to introduce the context for the research described in the next two
parts, Part II focusses on speech recognition research and development.
First the ABBOT speech recognition system is introduced in Chapter 3.
Chapter 4 describes the acquisition of a suitable phonetic dictionary and
the development of a Dutch G2P. Next, acoustic model training is addressed
in Chapter 5. Starting with Chapter 6 that gives an overview of n-gram
modelling in speech recognition, the field of language modelling is entered.
Chapter 7 gives an overview of the collected language model training data
and Chapter 8 reports the development of a text normalisation module, an
indispensable auxiliary tool for language model training. The selection of
an optimal speech recognition vocabulary in Dutch LVCSR, is discussed in

5Within MUMIS, speech recognition research is conducted at the A2RT group at the Uni-
versity of Nijmegen
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Chapter 9. Chapter 10 addresses the application of compound splitting in
a LVCSR framework. Applying n-gram language models in a Dutch LVCSR
context is described in Chapter 11. This chapter also provides the final eval-
uations of the Dutch LVCSR system developed in this research. Finally, all
speech recognition research and development is summarised in Chapter 12.
Part III, relates the results described in Part II to Dutch SDR by providing
an illustrative SDR experiment in Chapter 13. General conclusions are sum-
marised in Chapter 14.
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Chapter 3

The ABBOT speech
recognition system

In this chapter, hybrid RNN/HMM speech recognition system ABBOT that is
used in this research, will be described. First, the basic concepts of speech re-
cognition in a probabilistic framework will be introduced. Next, the main
characteristics of the ABBOT system will be outlined and compared with
those of traditional HMM based systems. In the final section, the assessment
methods used in this research will be addressed in brief.

3.1 Introduction

To enable spoken document retrieval research for Dutch an adaptable,
open-source, Dutch speech recognition system is needed. Finding such a
system however appeared to be difficult. A few commercial speech recog-
nition systems for Dutch were available at the outset of this research,
but these systems were typically tailored for speaker-dependent dictation
tasks1 or telephone command and control services2 deploying fixed gram-
mars and small to medium size vocabularies. Commercial large vocabulary
speaker independent speech recognition systems for Dutch were not avail-
able. But even if they would have been, such systems would probably not
have been very suitable for the intended research. A major drawback of
commercial systems is that these are usually a “black box” for commercial
reasons and cannot easily be adapted to allow for speech recognition im-
provement techniques that are applied frequently in SDR. Examples include
language model adaptation (e.g., Auzanne et al., 2000), dynamic acoustic

1Speech recognition software for dictation tasks: among others, Philips’ FreeSpeech,
Dragon’s Dragon Dictate and former Lernout & Hauspie’s VoiceExpress

2Speech recognition software for telephone command and control services: among others
Philip’s SpeechPearl recognisers. Recently Nuance also released a command and control type
of recogniser for Dutch
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model switching (e.g., Johnson et al., 1999) or using the system as a sub-
word based speech recognition system (e.g., Ng, 2000). Neither could the
Dutch speech research community supply a system suitable for SDR pur-
poses. Speech research in the Netherlands typically concentrates on one or
several specific speech recognition topics so there is generally no need for
a time-consuming set-up of a complete LVCSR system.

As a consequence of the lack of suitable Dutch systems, other options
had to be explored to provide for a speech recogniser that could be used for
the envisaged research. At academic sites, the open-source HMM based HTK
system developed by Steve Young3 was often chosen as a starting point for
the development of a research speech recognition system, but at the outset
of this research, the HTK-toolkit could not be obtained4. In earlier projects
(Christie, 1996) some experience was gained with an English hybrid sys-
tem, partly based on recurrent neural networks (RNN) and partly based on
Hidden Markov Models (HMM), that by the English developers is usually
referred to as the ABBOT system. As its sources could be obtained for re-
search purposes it was decided to use this system and port it to Dutch. The
motivation for choosing this particular system was partly based on availab-
ility. However, with the DARPA’s Hub4 broadcast news speech recognition
benchmark tests (Pallett, 2002) and, within an information retrieval frame-
work, with the TREC Spoken Document Retrieval Tracks (Garofolo et al.,
2000), the ABBOT system has also proven to be capable of reaching a top
performance.

Part II of this thesis addresses the porting process of the ABBOT sys-
tem to Dutch along with a number of language specific research topics
aiming at an optimisation of the Dutch system’s performance in the tar-
get domain, broadcast news. Porting a system to a target language involves
the creation of language specific acoustic models and language models.
As the generation of word pronunciations is a crucial procedure for both
speech recognition training and decoding, word pronunciation generation
is addressed first in Chapter 4. Next, the training of the Dutch acoustic
models is described in Chapter 5. Starting with Chapter 6, that introduces
language modelling in speech recognition, the focus is on language model-
ling related topics. First the collection and normalisation of language model
training data is described in Chapter 7 and Chapter 8. Next, issues con-
cerning the language model vocabulary in the broadcast news domain are
closely looked at in Chapter 9 and Chapter 10. Finally, language modelling
techniques and configurations are evaluated in Chapter 11, by conducting
a number of broadcast news speech recognition evaluations. The results
of these evaluations can be viewed at as the final Dutch speech recogni-
tion performance characteristics for the broadcast news domain that were
obtained as described in the second part of this thesis.

3See Appendix C for a short description
4As all rights to HTK rested with Entropic the HTK-toolkit had been temporarily unavail-

able. See http://htk.eng.cam.ac.uk/docs/history.shtml for a brief history of HTK
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In the remainder of this chapter, after a brief outline of speech re-
cognition in a probabilistic framework, the characteristics of the hybrid
RNN/HMM ABBOT system are described and compared with fully HMM-
based systems. In the final section (Section 3.4), the speech recognition
assessment methods that are used throughout this thesis are discussed in
brief.

3.2 ASR in a probabilistic framework

In large vocabulary speech recognition, the task is to find the sequence of
words or sentence W (W = {ω1,ω2, . . . ,ωN}) that is most likely to have
been spoken on the basis of the acoustic analysis of the speech input: the
acoustic observations (O). In a probabilistic framework, the probability of
a sentence being produced given some acoustic observations is typically
expressed as P(W |O). The most probable sentence (Ŵ ) is found by com-
puting P(W |O) for all possible sentences and choosing the one with the
highest probability:

Ŵ = argmaxP(W |O) (3.1)

Using Bayes’ rule, the conditional probability of a sentenceW being spoken,
assuming that certain acoustic observations O were made, can be broken
down into:

P(W |O) = P(O|W) · P(W)
P(O)

(3.2)

where P(O|W) is the likelihood that specific acoustic observations are made
given a sentence W , and P(W) the prior probability of the sentence W that
is obtained using language models. P(O) is the probability of observing the
given speech input. As for the computation of the most probable sentence
given a certain speech input, P(O) does not change, P(O) may be regarded
as a normalisation factor that can well be removed from the computation:

Ŵ = argmaxP(W |O) =
AM︷ ︸︸ ︷

P(O|W) ·
LM︷ ︸︸ ︷

P(W) (3.3)

What marks the difference between the hybrid HMM/RNN ABBOT system
and completely HMM-based systems, is especially the computation of
P(O|W), or the acoustic modelling part of the recogniser. Before the acous-
tic modelling itself is addressed, the input to the acoustic modelling pro-
cess, the acoustic feature vectors, will be described briefly.

3.2.1 Acoustic feature extraction

To enable the computation of acoustic probabilities given some speech in-
put, the acoustic observations first have to be defined in terms of meaning-
ful features in a signal analysis step. First the acoustic signal is digitised by
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measuring its amplitude at specific intervals that is defined by its sampling
rate, the number of samples taken per second (typically 8KHz for narrow-
band, telephone speech and 16KHz for wide-band, studio speech). In a
quantization process, the real-valued amplitude measurements are conver-
ted to 8-bit or 16-bit integer values. The frequency bandwidth of the re-
corded speech signal is an important factor in speech recognition since
it determines how much spectral information can be used to character-
ise speech sounds. In telephone speech only the frequency range of 300–
3400Hz is available. The absence of lower-frequency components prevents
for example a proper pitch analysis, whereas accurate detection of cer-
tain phones (such as fricatives) rely on the presence of the high-frequency
components. Speech recognition for narrow-band speech is therefore much
more difficult than for wide-band speech which also covers frequency
ranges of 50–300Hz and >3400Hz. In tasks with multiple bandwidths,
some sort of band detection is often performed (for example by computing
the ratio of the average energy below and above 4kHz) so that bandwidth
specific acoustic models can be applied. In this research the acoustic sig-
nals are digitised with a 16KHz sampling rate and stored using 16-bits
integers as the majority of the speech in the task domain is recorded in a
studio environment. The presence in the acoustic signal of different speech
(and non-speech) sounds can best be detected using the spectral repres-
entation, the representation of the different frequency components in the
signal. The acoustic observations are then typically defined in terms of a
stream of spectral feature vectors, each representing a spectrum at a par-
ticular point in time (overlapping time-slice) using a limited set of vector
coefficients. In speech recognition, smoothed versions of the actual spec-
trum or derivations of the spectrum, such as the cepstrum (the spectrum
of a spectrum), are often used. An LPC spectrum (Linear Predictive Cod-
ing, Atal and Hanauer, 1971; Itakura, 1975) is an example of a smoothed
spectrum. The ABBOT system uses feature vectors that are composed of
12 coefficients derived from an auditory-like analysis of the LPC spectrum,
called PLP (Perceptual Linear Prediction, Hermansky (1990)), that modify
the LPC features resembling the physic-acoustic properties of the human
ear. As a 13th coefficient, a measure of the energy contained in the signal
is included. The PLP features are computed from time-windows of 32 msec
(512 samples), every 16 msec (256 samples).

3.2.2 Computing acoustic model probabilities

The stream of feature vectors that are extracted from the acoustic signal
is passed to the next stages of the speech recognition process in order to
compute the acoustic model probabilities (P(O|W)) and language model
probabilities (P(W)). Using hidden Markov models to compute these prob-
abilities is the most popular approach in speech recognition. An HMM is a
stochastic automaton that consists of a set of connected states, each hav-
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ing a transition probability and an output or emission probability associ-
ated with it. The transition probabilities model the transitions from one
state to the other. The output probabilities model the observation likeli-
hoods of an observation being generated from a particular state. In HMM
speech recognition, the problem of finding P(O|W) can be expressed as
finding P(O|M), the likelihood that the observations O were generated by
a sequence of word HMM models, M that are associated with a sentence
W . The word models are in turn composed of sub-word unit models, typ-
ically phone models. In other words, the calculation of P(O|W) involves
the computation of the probability that the observations O are generated
by a particular set of HMM states Q. The usual HMM training approach is
to construct probability density functions (PDFs) that model the likelihood
of HMM states emitting a particular observation. These PDFs are typically
Gaussians or mixtures of Gaussians. The parameters of the PDFs are estim-
ated so as to optionally model the training data. The Viterbi algorithm or
alternatively a best-first search algorithm (stack decoding or A∗-search), is
then used to find the best path through the HMM given the observations.
See for example Rabiner and Juang (1993) for a detailed survey of HMMs
and search algorithms in speech recognition.

3.3 The hybrid RNN/HMM approach

The key difference between the ABBOT system and conventional HMM-
based systems is that connectionist, or neural, networks are used to model
the likelihood of HMM states emitting a particular observation, instead of
probability density functions. Multi-layer perceptrons (MLP), a well-known
class of neural networks, can be trained to associate an input (observation)
vector with a desired output vector. Given that this output vector consists
of a set of phones in a language, a trained MLP would produce a posterior
probability estimate for each phone, an estimate of how probable it is that
a particular input vector belongs to a phone class. These posterior probab-
ility estimates are converted to (scaled) likelihoods and then used to estim-
ate the HMM (phone) state probabilities. In Figure 3.1, a phone probability
stream given an utterance is visualised. An extensive review of the con-
nectionist approach to speech recognition can be found in Bourland and
Morgan (1994).

3.3.1 The recurrent neural net (RNN)

Instead of multi-layer perceptrons, the ABBOT system uses recurrent neural
networks (RNN) to estimate the phone probability estimates (Robinson,
1994). The advantage of the recurrent neural net is that it can build up
long term acoustic contextual information by incorporating feedback into
the system (see figure 3.2). For each input frame, an acoustic vector o(t)
is presented as the input to the network along with the current state q(t).
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Figure 3.1: Visualisation in the log domain of the phone prob-
ability stream given the sentence “NOS Acht uur Journaal
[ E n o: w E s A x t y r Z u r n a: l ]”. The figure was taken from
the output of showGuts, an utility program that comes with the
ABBOT software.
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The network then produces an output vector y(t) and the next state vec-
tor q(t+1). The state vector provides the mechanism for modelling context
and the dynamics of the acoustic signal as it builds up information from
the start of the sequence. By delaying the output vector, for example with
four frames (y(t−4)), forward acoustic information can be captured. State
probability estimates are then obtained by estimating P(qk|Xt+4

1 ), where qk
is a given state and X the observation sequence, which can be interpreted
as class posterior probabilities. As Equation 3.3 requires the computation
of the likelihood of the observations given a state sequence, these pos-
terior probability estimates are converted to (scaled) likelihoods by divid-
ing P(qk|Xt+4

1 ) by the prior state probability P(qk), which can be estimated
by using phone frequency information in the training data.

The phone duration is modelled within the HMM framework, where a
simple Markov chain represents phone duration. As long term forward
and backward acoustic context is modelled in the RNN, it is only neces-
sary to model context-independent phones, resulting in a single state per
context-independent phone. In HMM systems, acoustic context is modelled
via context-dependent phones which typically results in a large number of
phone models, each incorporating a number of states that model the dy-
namics of the signal within the phone. As a consequence a large number of
parameters need to be trained.

Although using context-independent phones with the ABBOT system is
generally sufficient, for example Cook and Robinson (1997) showed that
context-dependent models may still improve performance. Context-depen-
dent phones are chosen on the basis of a decision tree algorithm and then
modelled using context-class networks (Kershaw et al., 1996). The state vec-
tor of the RNN serves as input for these context-class networks as it con-
tains all relevant contextual information (see above). A context-dependent
phone probability is estimated by computing the joint probability of the
context-class probability and the phone class probability.

3.3.2 Training of the RNN/HMM system

Training of the hybrid system consists of training the RNN and the under-
lying Markov models. Typically a Viterbi training is used. This uses a forced
Viterbi alignment to obtain an optimal alignment between the input frames
and phone labels given the adjusted systems parameters in successive RNN
training cycles. The training problem can broadly be described as finding
the RNN parameters or weights that minimise the difference between the
network outputs and the desired output. This criterion is usually represen-
ted by an error function, also called objective function or criterion function,
and in a Viterbi training the error function is defined as the log posterior
probability of the aligned phone sequence. By adjusting the RNN weights
in the direction given by the derivative of the output error, such that the
cost function is gradually reduced with respect to the RNN weights (prin-
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Figure 3.2: Overview of the hybrid RNN/HMM system: acoustic pre-processing,
the RNN, phone duration modelling and language modelling (from Robinson et al.,
1996).

ciple of gradient descent), the RNN weights are optimised. Reducing the
cost function in the training process of a neural net, is done using the
back-propagation-through-time (BPTT) algorithm (Werbos, 1990).

Although the BPTT algorithm may be very efficient in space and com-
putation, an RNN training cycle is still computationally expensive and can
best be done on dedicated hardware. Robinson et al. (2002) report that
the training of a large MLP (with 8,000 hidden units) using 142 hours of
training data required some 1015 parameter updates, and took 21 days us-
ing special-purpose hardware. It must be noted however that increasing the
network size is especially useful when large amounts of training data (up to
100 hours and more) can be exploited. Given that the available Dutch train-
ing data is relatively small and no dedicated hardware could be obtained,
for this research, only relatively small models were trained (restricting the
RNN size to 256 feedback units, see also Chapter 5).

The transition probabilities of the phone models are optimised by re-
estimating the duration models and the prior phone probabilities on the
pronunciations that are encountered in the training data. The training pro-
cedure is then as follows (visually depicted in Figure):

1. Assign an initial phone label to each frame of the training data by
using hand-labelled speech or by bootstrapping. The bootstrapping
method assumes that the models are already trained to some extent
and are able to create a first reasonable alignment.

2. Construct the phone duration model and compute the prior phone
probabilities based on the alignment.

3. Adjust the initial RNN weights so that the log posterior probability of
the aligned phone sequence is maximised.
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4. Apply a forced Viterbi alignment using the new parameter settings ob-
tained in [2] and [3] and proceed with [2] until an optimum is reached.

3.3.3 Model combination

A useful feature of the hybrid framework is the possibility to combine
acoustic models by merging the output of multiple networks. As the RNN is
time-asymmetric (a standard HMM is not), training the RNN with the train-
ing data both presented forward and backward in time produces differ-
ent acoustic models. It has been shown that combining the information
from both models can improve performance substantially (Hochberg et al.,
1994). But also other types of combinations are possible. Robinson et al.
(2002) for instance, report the use of model combinations based on differ-
ent acoustic features, different amounts of data and representing different
balances of acoustic conditions. The combination of information sources
is achieved by merging the network outputs in the log domain (Hochberg
et al., 1994).

3.3.4 Word decoders: CHRONOS and NOWAY

Given a dictionary with word pronunciations combined with an acoustic
model that provides the observation likelihoods P(O|W), and a language
model that restrains possible word sequences P(W), the search for the
most probable word sequence given the acoustic evidence is performed in a
decoding stage. For small vocabularies and short span language models, the
Viterbi algorithm can be used, but as this algorithm performs an exhaust-
ive search it becomes highly inefficient when the search space expands
drastically due to larger vocabularies and long span language models. Modi-
fications to the Viterbi algorithm have been proposed, such as multi-pass
(N-best or word lattice) approaches (e.g., Schwartz and Chow, 1990) to re-
duce the search space. These algorithms that are based on the Viterbi al-
gorithm are called time-synchronous: the probabilities of active states at
time t are computed before the probabilities at time t + 1 are computed.
Another class of search algorithms, called best-first search algorithms, are
based on stack decoding (or A∗ search, Jelinek et al. (1975)). In these search
algorithms, partial paths are extended in order of their probability using a
search lattice or tree and keeping a priority queue (stack) of partial paths.
As it is too expensive to consider all paths when applying a beam search,
pruning the search is necessary. The ABBOT system employs confidence
measures (among others by setting a threshold on the local posterior prob-
ability estimates, posterior probabilities below the threshold are pruned,
Renals (1996)) for pruning and adaptive beam widths (8 in this research)
are used to limit the stack size.

For the ABBOT system, two decoders have been developed that are
based on stack-decoding, the NOWAY decoder that uses a start-synchronous
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search organization (see, Renals and Hochberg, 1999)) and the CHRONOS
decoder that has implemented a time-first search (Robinson and Christie,
1998). As the available version of the NOWAY decoder5 was substantially
slower then the CHRONOS decoder, the latter was used for the Dutch LVCSR
evaluations.

3.4 Assessment of the speech recognizer

During the porting and development procedures described in the next chap-
ters, the (progress of the) Dutch ABBOT system was evaluated using a num-
ber of standard assessment techniques. As a reference, these are listed be-
low with a short explanation.

• Word/Phone error rate. For the assessment of the speech recognition
system as a whole the standard evaluation metric, the word error rate
(WER02) is used. The word error rate is based upon a comparison of
a reference transcription of the test material with the output of the
recognizer referred to as the hypothesis transcription. The scoring al-
gorithm searches for the minimum edit distance in words between the
hypothesis and the reference and produces the number of substitu-
tions, insertions and deletions that are needed to align the reference
with the hypothesis. The word error rate is then defined as:

WER = Insertions +Deletions + Substitutions
Totalwordsinreference

· 100 (3.4)

To measure the performance of the acoustic models alone, the phone
error rate (PER) can be computed in the same way. Instead of words,
phones serve as basic units in the alignment process. The word error
rates and phone error rates were obtained using the sclite scoring
software (see Appendix C.2).

• Term error rate. In spoken document retrieval an alternative speech
recognition error metric can be observed, the term error rate, that is
defined as:

TER =
∑

t∈T |R(t)−H(t)|
|T | · 100 (3.5)

where R(t) and H(t) represent the number of occurrences of query
term t in the reference and the hypothesis respectively. The TER gives
a more accurate measure of speech recognition performance condi-
tioned on a retrieval system as it takes only the mis-recognized query
terms into account.

5For this research, version 2.9 of the NOWAY decoder and version 0.5.3 (from release
1.4.0) of the CHRONOS decoder were available
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• Out-of-vocabulary rate. As a measure for the quality of the speech
recognition vocabulary and the language model in terms of word cov-
erage with respect to the task, the out-of-vocabulary rate (OOV rate)
is used: the ratio of the number of words in the task that do not exist
in the vocabulary, to the total number of words in the task. Note that
an out-of-vocabulary word that appears twice in the task, adds two
counts to the amount of OOV words.

• Perplexity. For the evaluation of language models, the perplexity (PP)
measure is used as described in detail in Section 6.5. The perplex-
ity can be interpreted as the branching factor in the recognition task,
an estimate of the number of word choices a recognizer has when
it has to decide which word was spoken, or number words that are
equally probable. Perplexity is thus a measure for the task difficulty
from the recognizer’s point of view. The less difficult the task be-
comes by creating language models with decreasing perplexities, the
better the performance of the recognizer is expected to be (ceteris
paribus).

• Processing time. In this research, processing time of decoding will
occasionally be referred to in number of times real-time (xRT, e.g.,
2.3xRT). Processing time can be an important additive performance
measure, as speech recognition performance can be improved con-
siderably when systems are not constrained in any way. However, for
spoken document retrieval tasks, typically hundreds or even thou-
sands of hours of data need to be processed so that processing time
becomes very significant. In order to let a system run in real-time,
it is usually necessary to restrict the system’s parameters (pruning),
often resulting in a considerable performance degradation. Evidently,
processing time is also related to the computer system’s perform-
ance. For this research, a 1GHz dual-processor Pentium-III with 1Gb
RAM running Linux and a dual-processor 450 MHz Sun UltraSPARC-II
workstation with 2.0 GB of memory were used.
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Chapter 4

Word pronunciation
generation

This chapter addresses the acquisition of word pronunciations or phonetic
representations of the words in the speech recognition vocabulary. Proper-
ties of the background lexicon and the chosen phonetic representations are
discussed. Finally, the development of a tool that was regarded as indispens-
able for this research, a Dutch grapheme-to-phoneme (G2P) converter, is
described.

4.1 Introduction

Next to the acoustic model and the language model that will be addressed in
the next chapters, the speech recognition dictionary is a third crucial com-
ponent of an ASR system and its quality also highly determines its even-
tual performance. The dictionary contains the pronunciation of the words
that the system can recognise. As such, the dictionary provides the link
between the language model containing orthographic representations, and
the acoustic models that are based on phonemic representations. Word pro-
nunciations can be viewed as rules for the concatenation of phone models
to arrive at the words contained in the language model (Adda-Decker and
Lamel, 2000). Throughout this thesis, the list of words with pronunciations
will be referred to as the speech recognition dictionary. The terms speech
recognition vocabulary or lexicon will sometimes be used instead. Whereas
the former explicitly includes the word pronunciations as well, the latter
two terms do not.

As it is not possible to include all the words of a language in the speech
recognition vocabulary, usually text data that closely resemble the task do-
main are deployed to obtain an indication of the word usage in the do-
main, enabling the selection of an appropriate set of vocabulary words. In

63
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Chapter 9, the selection of words for the speech recognition vocabulary will
be addressed in more detail. The broadcast news (BN) domain is a relatively
“open” with respect to word usage. Predicting exactly which words are to
be used in news items is virtually impossible and as a result of this, the
usual approach is to include as many words as possible in the vocabular-
ies, hoping that by doing so, at least the majority of the words occurring
are covered. The maximum number of words that can be included in the
vocabulary is restricted by the number of words a speech recognition sys-
tem can deal with, which is typically 65K words. But as news topics are
constantly changing, it is also necessary to revise the selection of vocabu-
lary words with regular intervals. By doing so, words that have shown an
increased news value due to recent events but were not in a vocabulary cre-
ated earlier, can be recognised as well. So, for speech recognition in the BN
domain, instead of using a large, static 65K vocabulary, dynamic vocabu-
laries are often used that are updated frequently.

To obtain word pronunciations for the large and dynamic speech re-
cognition vocabularies in the BN domain, speech recognition developers
usually deploy a large background pronunciation lexicon to enable a flex-
ible generation of word pronunciations (see Figure 4.1 on page 66). When
word pronunciations are not in the background lexicon, word transcripts
can be manually generated, or produced by a grapheme-to-phoneme1 con-
verter (G2P) that for instance uses rules for pronunciation generation. As
generating pronunciations manually is time consuming, a G2P converter
is often indispensable. Especially for languages such as Dutch or German,
that have a high lexical variability due to stemming and word compound-
ing, it is impossible to capture all possible words in a background lexicon.
Obtaining word pronunciations via a G2P tool or splitting rules (see, e.g.,
Adda-Decker and Adda, 2000) will often be necessary. Furthermore, in the
news domain, proper names and names of cities and places, referred to
as named entities, occur frequently. But typically, only the most important
named entities are included in background lexicons. Hence, for the genera-
tion of pronunciations for named entities, a G2P tool can be most helpful.

In this chapter, the generation of Dutch word pronunciations for speech
recognition dictionaries deployed in the BN domain is addressed. In the
next section, methods for acquiring word pronunciations are discussed in
more detail including a description of the available background pronunci-
ation lexicons. The next section shortly addresses the lexical representa-
tion of the word pronunciations that are used to develop a Dutch G2P as
described in Section 4.4 and evaluated in Section 4.4.3.

1Also referred to as text-to-speech or letter-to-phone/sound
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4.2 Acquiring word pronunciations

4.2.1 Background lexicon

Through the LDC2 a number of pronunciation lexicons (e.g., PRONLEX for
American-British English, CELEX for English, German and Dutch) are avail-
able for various languages that can be used as a reference for the generation
of word pronunciations. Such lexicons are composed of word-pronunciation
pairs. The pronunciation is provided using a particular representation or
phone set (discussed below) and usually stress information (primary and
secondary stress) is included3. The Dutch CELEX lexicon contains almost
120K word pronunciations. However, as shown in Table 4.1, for a standard
65K vocabulary, generated using the most frequent words in 300M words
of newspaper data (described in Chapter 7) the CELEX lexicon has a cover-
age of 37.5%. Therefore, almost two-third of the word pronunciations have
to be produced either by hand or by a G2P tool.

For the development of the grapheme-to-phoneme converter described
below, the Dutch dictionary publisher Van Dale Lexicografie4 provided a
substantially larger pronunciation lexicon of 1,2M words (further referred
to as GVD) that could be used as a background lexicon. As is shown in
Table 4.1, the GVD lexicon has the much better coverage of 72% given a
65K word list of most frequent words in the newspaper corpus. By adding
hand-crafted word pronunciations of frequent words that were missing (es-
pecially named entities and acronyms) its coverage could be improved to
almost 77% (GVD∗). Note that the pronunciation of acronyms consisting of
consonants only can easily be obtained automatically by concatenating the
pronunciations for every single consonant.

'

&

$

%

Reference lexicon size coverage NN oov Acron oov
CELEX 118,447 37.5% 22.5% 1.4%
GVD 1,274,399 72,2% 19.5% 1.4%
GVD∗ 1,278,361 76.6% 17.7% 0.3%

Table 4.1: Coverage of background lexicons given a 65K word list (top
65K most frequent words in a 300M words Dutch newspaper corpus)
and the contribution of named entities (NN) and acronyms to the total
number of missing words that are not in the lexicon.

2Linguistic Data Consortium, see Appendix C.1
3Stress information is however only sparsely used in speech recognition. A problem with

modelling stress information in ASR is that it is easily confounded with higher order lin-
guistic phenomena such as rhythmic phrasing and sentence accent (Van den Heuvel et al.,
2003)

4See also Appendix C.1
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Figure 4.1: Dictionary creation procedure. The language model creation
procedure typically provides vocabulary of words. The pronunciation of
the words are either looked up in a background lexicon or produced by
a grapheme-to-phoneme converter. In the latter case, pronunciations can
be checked manually. Optionally, the pronunciation can be mapped to
another phone set.
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Note that a substantial part of the words that are not covered in the
lexicons concern named entities and acronyms. For the GVD∗ lexicon, 20%
of the missing word pronunciations can be attributed to these types of
words.

4.2.2 Automatic generation of pronunciations

But even a relatively comfortable word pronunciation coverage of some
75%, means that given a 65K word lists well over 15K word pronunci-
ations are missing. As such a number of word pronunciations cannot be
generated by hand, two choices remain: either including only those words
in speech recognition vocabularies for which word pronunciations are avail-
able, or deploying a G2P tool that generates pronunciations automatically.
As even very high performance G2P tools are bound to provide incorrect
word pronunciations occasionally, relying on a G2P tool inevitably means
introducing (some) pronunciation errors. On the other hand, choosing the
safe side by relying on a trusted set of pronunciations provided by the
background lexicon and dropping the words without pronunciations (or
alternatively, manually transcribing the most frequent missing ones) will
result in a decreased coverage of the words in the task domain, or a higher
out-of-vocabulary (OOV) rate. The importance of including as many relev-
ant words as possible in the recognition vocabulary is discussed in detail
in Chapter 9. The question of whether or not to used a G2P tool, definitely
depends on its performance. When the G2P tool is reasonably accurate and
produces only small deviations from the correct pronunciation (such as
confusing voiced with unvoiced), the speech recognition performance de-
gradation caused by OOV words may exceed a possible degradation due to
pronunciation errors.

Automatic transcription of foreign words

Foreign words—named entities such as “New York” or “Moskowitch”, but
also loan words—are frequently encountered in broadcast news material.
A complicating factor with the automatic generation of pronunciations for
these words is that they do not follow the Dutch rules for word pronun-
ciation. G2P tools using Dutch word pronunciation rules for transcription
will therefore inevitably fall short. Moreover, such words contain phonemic
representations that are principally not observed in Dutch, such as the [ T ]
in “the”. Although the latter is mainly of concern for the definition of the
units for lexical representation as discussed below, it may complicate G2P
modelling based on learning algorithms as foreign phones occur relatively
infrequently. Furthermore, they may introduce errors as the grapheme-to-
phoneme mapping differs. For example, the grapheme sequence “th” in the
Dutch word “thema (English: theme)” should be mapped to [ t ] whereas for
English words this sequence is usually pronounced as [ T ].
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4.2.3 Alternative pronunciations

Background lexicons and especially G2P tools usually provide canonical
word pronunciations only, according to a normative, “average” pronunci-
ation of words. However, in practice, words are pronounced in numerous
variations, departing in different degradations from the canonical pronun-
ciation, among others due to age, gender or dialect (inter-speaker variabil-
ity) and speaking style, speaking rate, co-articulation or emotional state of
the speaker (intra-speaker variability) (Kessens, 2002; Wester, 2002). Jost
et al. (1997) estimated that in spontaneous speech around 40% of the words
are not pronounced according to the canonical representation. As such mis-
matches may occur both at acoustic modeling training stage and at the re-
cognition stage, such variations result in a degradation of word accuracy
of the speech recognition system (Fosler-Lussier (1999)). By incorporating
pronunciation variations in the lexicon, the number of inaccurate phone-
to-word mappings could be reduced.

Alternative pronunciations can be acquired using knowledge-based ap-
proaches, for instance by applying phonological rules. A Dutch example
is the schwa-insertion rule that states that a schwa may be inserted in
nonhomorganic consonant clusters5 in coda position6, such as in “melk
(English: milk)” that can be observed with and without schwa-insertion:
[ m E l @ k ] and [ m E l k ]7. Using this rule, an alternative pronunciation
can thus be generated and added to the background lexicon. Alternatively,
data-driven methods that deploy the manual transcripts of some training
data or the transcripts of a phone recognition system for acquiring pro-
nunciation variants. For an overview of the literature on pronunciation vari-
ation see Strik and Cucchiarini (1999). In Wester (2002) and Kessens (2002)
rule-based and data-driven approaches applied for the Dutch language are
compared.

In this research, pronunciation variation is only marginally addressed.
In a few preliminary studies, the effect of modeling cross-word co-articu-
lation in the acoustic training phase in order to improve acoustic modeling
performance was investigated (Ordelman et al., 1999a,b). However, this ap-
proach was abandoned as it did not yield very promising results. Further-
more, it was decided not to incorporate pronunciation alternatives in the
speech recognition vocabularies for two reasons. Firstly, as the Dutch pro-
nunciation variation research described in Wester and Kessens had already
been started at the outset of this research, it would be rather inefficient to
start the same type of investigations. Secondly, as the speech recognition
vocabulary for the ABBOT system is limited to 65536 words, adding pro-
nunciation alternatives effectively means that fewer different words can be

5The place of articulation differs for each consonant in the cluster, e.g., compare [ m E l k ]
with [ m E s t ]

6The coda is the final part, the onset is the start of the syllable
7The IPA notation will be used to represent phones throughout this thesis. Translations

to other phone sets and examples can be found in Appendix B
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included8, resulting in higher OOV rates (see Section 9.2). Therefore, it was
taken for granted in this research that the word pronunciation represent-
ations were not always optimal, favoring the incorporating of new words
above new pronunciations.

4.3 Lexical representation

There are two approaches for representing the word pronunciations in the
lexicon: using a phonemic, generalized representation with phonemes and
a representation that includes allophones, different realizations of phon-
emes. The choice for one of these approaches is particularly determined by
acoustic modeling decisions: is (some of the) allophonic variation explicitly
modeled using separate phone models or is the representation of this vari-
ation left to a single phoneme model. The exact set of phones of phonemes
(referred to as the phone set) is usually chosen on the basis of a standard
system, such as IPA (International Phonetic Alphabet9) or SAMPA (Speech
Assessment Methods Phonetic Alphabet10), which is based on IPA but made
more suitable for application with computers by mapping the IPA symbols
onto 7-bit printable ASCII characters. When a background lexicon or G2P
tool is obtained elsewhere, it may be necessary to apply a mapping from
the phone sets that are provided onto the phone sets that are wanted. Map-
ping phone sets may however result in a loss of information when phone
sets differ in the amount of allophonic variation they describe.

Evidently, the language in the task domain determines the choice of the
phone set to a large extent. However, the frequent occurrence of foreign
pronunciations in the task domain may require that ’foreign’ phones are
included in the phone set, such as the [ T ] phone that typically occurs
in English words and is usually not a standard phone in a Dutch phone
set. Alternatively, when a phone that would normally be in a Dutch phone
set, is only exceptionally encountered (which for example is the case with
the marginal vowels [ E: ], [ ø: ] and [ œ: ]) it could well be removed from
a standard phone set. The “trainability” of the phone is decisive in this
respect. The individual phonetic realizations have to occur frequently in
the available training data to enable the training of robust models. Aiming
at fine-grained acoustic models with the intention of increasing acoustic
model accuracy, may not be feasible as only a small number of examples
can be observed in the available training data. Hence, there is a trade-off
between resolution and robustness (Adda-Decker and Lamel (2000)) with
respect to the choice of the phone set that is used for the actual acoustic
model generation. In this research, two phone sets are referred to:

8The CHRONOS decoder that was used for this research did not allow multiple transcrip-
tions for one single vocabulary entry. With the NOWAY decoder, each vocabulary item can
have as many pronunciations as desired

9IPA homepage: http://www.arts.gla.ac.uk/IPA/ipachart.html
10SAMPA homepage: http://www.phon.ucl.ac.uk/home/sampa/home.htm
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• the GVD phone set
A large, detailed phone set that is used for the word pronunciation
representations in the GVD lexicon.

• the DRUID phone set
As the GVD set is too detailed and therefore not suitable for speech
recognition, a smaller phone set of 45 phones, loosely based on the
Dutch SAMPA phone set, was created for representing word pronun-
ciations in the training and recognition vocabularies. In Chapter 5 the
choice of the phone set will be discussed in more detail.

In Appendix B the GVD and DRUID phone sets are listed along with the IPA
and SAMPA counterparts and including example words.

4.4 Development of the G2P converter

As discussed above, a G2P tool was regarded as an indispensable tool for
the generation of word pronunciations in BN transcription tasks. Instead
of using existing Dutch G2P tools (for example TREETALK (Busser, 1998) or
MORPA cum MORPHON (Van Heuven and Pols, 1993)), it was decided to de-
velop a new tool as this would enable flexible adaptations to the envisaged
research and training lexicons. The Dutch dictionary publisher Van Dale
Lexicografie provided the GVD lexicon for training purposes. Automatic
grapheme-to-phoneme conversion has been the subject of many studies
including some that specifically address G2P conversion for the Dutch lan-
guage (among others, Van den Bosch, 1997; Van den Bosch and Daelemans,
1993; Bouma, 2000; Busser, 1998; Van Heuven and Pols, 1993; Stoianov
and Nerbonne, 1999). Of the approaches mentioned in these studies, the
one proposed by Van den Bosch was chosen as a starting point. In this ap-
proach the G2P applies a learning algorithm and uses a decision tree that is
built during a training phase using a training lexicon. The decision tree has
generalization capabilities that allow the G2P tool to provide transcriptions
for words not present in the training lexicon. A number of training para-
meters can be used to influence the performance of the resulting decision
tree.

4.4.1 Tree structure

Every node in the trained G2P decision tree has a phone associated with
it that represents the best phone choice given a target grapheme in a par-
ticular graphemic context. For example, a graphemic context window of 3
left and right of the target grapheme can be used. Given the word taxi, a
context window can be placed sequentially over each grapheme as follows:



4.4. DEVELOPMENT OF THE G2P CONVERTER 71

[t] a x i
t [a] x i

t a [x] i
t a x [i]

Here, the target grapheme is outlined in square brackets and the under-
scores denote fillers that are necessary near the beginning and ending
graphemes of the word.

Figure 4.2 shows the G2P tree that is generated when a single word-
transcription pair is used as input lexicon. The word used is the Dutch
word “laat (English: late)” which is phonetically represented as [ l a t ].

The ‘.’ phone in two of the nodes in the tree is referred to as a null phone
and acts as a filler phone as described below. Each node in the decision tree
has a number of child nodes and the path to each of those child nodes is
labeled with a grapheme. To find the corresponding phone for a grapheme
in a given context, the G2P tree is traversed starting from the root of the
tree using each of the graphemes in the window once. For optimization
purposes the graphemes (or features) of a window have a certain ordering,
the feature order . The ordering has to ensure that the most important or
informative features (graphemes) are used first.

The decision tree is constructed using the IGTREE algorithm (Van den
Bosch, 1997). This algorithm uses a formal notion of feature importance
in classification called information gain. Here, ‘importance’ refers to the
amount of information a certain feature provides. As one may expect, the
target grapheme of a window and the graphemes directly surrounding the
target are the most important for correct classification. The classification
value of graphemes is likely to decrease with the distance from the target
grapheme.

For tree construction, the IGTREE algorithm expects a feature ordering
that is sorted by decreasing information gain value. The G2P tool provides
a way to generate the information gain value for each of the features so
that the feature order can be validated. For the Dutch language, the feature
order used is: first, the target letter, then the first letter to the right of the
target letter, next the first letter to the left of the target letter, next the
second letter to the right of the target letter, and so on. The information
gain values listed in Table 4.4.1 for each of the features support this or-
dering. These values were calculated from a lexicon of a little over 400,000
Dutch words. A window size of three left and right was used here.

The target grapheme is the most important feature for window clas-
sification11. The above ordering is a straightforward way of stressing the
importance of the target grapheme and its neighboring graphemes.

11This is however not always the case: In Van den Bosch (1997), information gain values
of window features for three other word-pronunciation sub-tasks (morphological segment-
ation, syllabification and stress assignment) are listed in which a letter directly left or right
of the target letter is a significantly more important feature than the target itself.
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Figure 4.2: Example G2P tree
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Feature IG
T 3.500
T+1 0.869
T-1 0.687
T+2 0.307
T-2 0.198
T+3 0.116
T-3 0.060

Table 4.2: Information Gain values

4.4.2 Pre-processing of the training data

During the training/tree-construction phase, every window of a word is
labeled with a phone. This requires that the number of phones in the tran-
scription equals the number of graphemes in the word. To satisfy this re-
quirement, some word-transcription pairs need to be pre-processed, pre-
ceding the actual training phase, applying rewrite rules and null insertion
rules. Rewriting is needed for words that are shorter than their transcrip-
tion. For example, the word taxi has four graphemes, but its Dutch tran-
scription [ t À k s i ] has five phones. Therefore, using a rewrite rule that
maps the grapheme x to ks, taxi is rewritten to taksi. Some forty rewrite
rules are used during G2P training (see, Ordelman et al., 2001a). Another
solution is needed when a word is longer than its transcription. For ex-
ample, the word “laat” from the example tree was transcribed as [ l a t ],
so the transcription is one phone shorter. This can be solved by inserting a
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null symbol in the right place in the transcription: [ l a . t ]. This null symbol
or null phone simply acts as a filler. About 125 null phone insertion rules
were used in the G2P. The number is determined by the phone set that is
used and the rewrite rules that work on the words prior to null insertion.

A disadvantage of the rewriting rules and null-phoneme insertions rules
described above is that they must be learned from training errors. Errors
could be found by introducing a phone mapping check. For example, a map-
ping of the grapheme “r” to the phone [ d ] is not likely for Dutch so a
null-insertion error could be detected given the first example in Table 4.3.
A number of trial runs are needed to obtain a useful set of rules with a low
amount of errors.
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r o n d d r i j v e n d e
r O n d . d r EI v @ n d @

n a t g o o i e n
n A t x o: . j @

c o m p j u t e r j u n k
k O m p j u t @ r d Z U N k

Table 4.3: Training error examples

Alternative method

Currently, instead of manually creating rewrite rules and null-insertion
rules, a procedure is being investigated that deploys a dynamic program-
ming algorithm (such as minimum edit distance or a maximum probabil-
ity alignment) for generating those rules automatically (e.g., Mana et al.,
2001). Assigning weights or penalties to certain alignment actions (e.g., 1
for a deletion, 2 for a insertion, 1 for an allowed but non-standard graph-
eme-to-phone mapping and 5 for all other mappings) can then effectively
be deployed to create an optimal alignment given the training data. Us-
ing training statistics, optimal penalty settings can be obtained. In this re-
search however, the G2P implementation described above with manually
generated rules is used.

4.4.3 Training and evaluation

For the training of the G2P, the GVD lexicon was divided into a randomly
chosen training set (960K words, ≈ 75% of the words) and a test set
(320K). Note that both sets included words with diacritics, named entities
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and foreign words. Stress and word boundary information was removed
from the pronunciations.

In Table 4.4 the results of the G2P performance evaluation are listed.
The word accuracy measure gives the percentage of pronunciations provid-
ed by the G2P that are identical to the reference pronunciations. The phone
accuracy gives the percentage of phones that were correctly generated by
the G2P.
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discarded testtype #wrds word accuracy phone accuracy
8.06% Train 962,170 91.2% 98.6%

- Test 320,723 90.0% 98.5%

Table 4.4: G2P performance evaluation results including the number of
discarded items during training and the number of test words.

The 90% word pronunciation accuracy of the G2P compares well with
the performance of other Dutch G2P’s reported in the literature. It must
be noted however that the training sets and test sets used in this research
are substantially larger than observed in the other studies. Although these
results leave room for further improvements, the G2P was regarded as a
useful and reasonably reliable tool for the generation of missing word pro-
nunciations given the dynamic vocabularies used in the envisaged BN tran-
scription tasks.

4.5 Summary and future work

In this chapter the generation of word pronunciations for the speech re-
cognition dictionaries was discussed. As for broadcast news items which
words are likely to be used can only be predicted to some extend, typic-
ally large vocabularies are deployed for speech recognition in this domain.
As usually not all word pronunciations for the words in these vocabular-
ies are available in a background lexicon, a grapheme-to-phoneme (G2P)
converter is an indispensable tool. The development of such a G2P tool
was described. The G2P applies a learning algorithm and uses a decision
tree for the generation of pronunciations. The tree was constructed using
the IGTREE algorithm. Although the G2P achieved a reasonable pronunci-
ation generation accuracy of 90% for unseen words, it was explained that
the training procedure, relying on a large proportion of rewriting rules and
null-insertion rules, is capable of improvement. Circumventing the manual
generation of the majority of these rewriting rules deploying a dynamic
programming algorithm, is currently being investigated.
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A G2P as dynamic speech recognition lexicon

Besides improving the training procedure of the G2P, it may be worthwhile
to investigate whether pronunciation variation can be incorporated. It is
well-known that pronunciation variation is a source of error in speech
recognition and a number of approaches have been proposed (such as
those of Kessens, 2002; Wester, 2002, for Dutch) to deal with this problem.
In automatic grapheme-to-phoneme conversion, pronunciation variation is
usually not addressed explicitly, as the goal is merely to enable the gen-
eration of a normative pronunciation of a word when the pronunciation
cannot be derived from an, often carefully constructed, background lex-
icon. However, instead of regarding a G2P tool as an auxiliary tool that
is only deployed in special circumstances, a G2P can also be viewed as
a speech recognition lexicon itself, dynamically providing the word pro-
nunciations that are needed at a particular stage in the recognition pro-
cess. In the ideal case, the G2P provides those pronunciation variants that
are most likely given some general knowledge that it has obtained earlier
about the pronunciation of a given word, and some task-conditioned know-
ledge about the pronunciation of words, for example generated on the
basis of a recognition history. The general knowledge could for example
be obtained using a data-driven approach that for example deploys forced
alignment techniques and decision trees for collecting pronunciation vari-
ation statistics from automatic transcriptions of a relatively large, general
speech corpus, such as for Dutch the “Spoken Dutch Corpus” (CGN, see
also Chapter 5). This general pronunciation knowledge could be repres-
ented using word pronunciation probabilities. The task-conditioned know-
ledge may then be used in two ways: firstly, to weight the probability dis-
tribution according to the local context and secondly, to adapt the gen-
eral knowledge given the local pronunciation observations, resembling a
continuous learning process. An example of deploying weights using task-
conditioned pronunciation knowledge, could be assigning more weight to
pronunciations containing certain phone deletions given that these were
frequently observed in a task’s history. Although the implementation of
such an approach may be complicated and undoubtedly introduces new
problems (setting thresholds, incorporating phonological/phonetic know-
ledge), it may provide a framework for a dynamic handling of pronunci-
ation variation in large vocabulary speech recognition tasks.

Handling loanwords and foreign names

In general, the handling of the, frequently occurring loanwords and for-
eign names in the BN domain, deserves some more attention in G2P de-
velopment. As the pronunciation of these words often contradicts Dutch
pronunciation rules, the correct word pronunciations will often not be gen-
erated by a G2P, even when these words had been included in the training
set. Currently, the only solution seems to include loan words and foreign
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names as often as possible in a background lexicon. Preferably, one would
deploy some sort of language detection and generate a pronunciation on
the basis of the language classification. For example, when the language
detection tool classifies a word as being an English word, an English G2P
could be consulted for the generation of the pronunciation.

Compound splitting and the pronunciation lexicon

A final issue that needs to be addressed in the context of future research in
grapheme-to-phoneme conversion is compound splitting. The chance that
a Dutch compound word is not in the background lexicon, and hence, its
pronunciation has to be obtained via a G2P tool, is generally higher than for
non-compound words as new compounds can be easily invented. However,
by splitting the compounds into its components, a pronunciation could
still be generated from the lexicon by concatenating the available pronun-
ciations of the components. In order to produce correct pronunciations,
co-articulation rules must be applied during the concatenation process. Al-
though compound splitting was addressed in this thesis in the context of
vocabulary construction (see Chapter 10), it was not yet applied within the
context of word pronunciation generation. It is worthwhile investigating
how much the percentage of word pronunciations that can be provided by
the background lexicon (currently some 75%), can be improved by apply-
ing compound splitting, and a procedure for component concatenation and
co-articulation correction.



Chapter 5

Acoustic model training

In this chapter the creation of Dutch acoustic models within the RNN/HMM
framework is addressed. The performance of different acoustic models is
discussed in relation to the training material that was used, the acoustic
model merging procedure and the size of the recurrent neural net.

5.1 Introduction

The training of the acoustic models is undoubtedly one of the key pro-
cedures in the development of a speech recognition system. When it was
decided to port the English ABBOT system to Dutch, acoustic model train-
ing was given priority and the first task became the collection of suitable
acoustic training corpora. With the collected data, a number of acoustic
models were trained and their performances in terms of phone error rates
(PER) were measured on corpus specific test data and, in order to investig-
ate which models best suit the intended task domain, broadcast news test
data. As the RNN/HMM framework allows for the combination of acoustic
models by merging the output of multiple networks, the effect of different
model merging strategies on PER was compared. Finally, it was briefly in-
vestigated how the size of the recurrent neural net (RNN) influenced model
performance. In Section 5.2, the collection of acoustic training data will be
addressed, followed by a description of the research goals in the acoustic
modelling part in this research. The acoustic modelling procedure using
the RNN/HMM framework is outlined next, as an introduction to a review
of a number of different training variants based on different corpora. Fi-
nally, the results of merging acoustic models and altering network size, are
discussed.

77
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5.2 Training data

For acoustic model training, example data is collected resembling the data
characteristics in the task domain. The better the characteristics of the
training data and test data match, the better speech recognition perform-
ance in general will be. But as was already discussed in brief in earlier
chapters, the broadcast news (BN) domain is characterised by highly vary-
ing audio quality, speaker characteristics and acoustic conditions, as illus-
trated in Table 5.1. For optimal speech recognition performance in this
domain, it would be preferable to train separate acoustic models for each
of the observed conditions. However, this implies that these acoustic condi-
tions can also be recognised automatically, enabling the speech recognition
system to switch to the appropriate acoustic model at recognition time. As
this can be complicated, only gender dependent and bandwidth depend-
ent modelling is usually applied (e.g., Nguyen et al., 2002; Woodland, 2002)
in the practise of the English Hub4 benchmark tests, without making any
further distinctions in observed conditions in the broadcast news data.
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Focus cond. descr. example
F0 Clean planned speech television news
F1 Clean spontaneous speech television discussions
F2 F0+F1 narrow-band telephone interview
F3 F0+background music tune in background
F4 F0+background noise applause
F5 F0+non-native dialect British-English
FX Any other combination spontaneous non-native

Table 5.1: Focus conditions in the Hub4 “broadcast news” speech recog-
nition evaluations.

Still, in order to capture the acoustic variability in the broadcast news
domain sufficiently, large quantities of training data are needed for acous-
tic model training. In the English Hub4 benchmark tests, the Linguistic Data
Consortium (LDC, see also Appendix C) made hundreds of hours of BN
acoustic training data available for participants (Graff, 2002). In contrast,
at the start of this research, Dutch corpora suitable for speech recogni-
tion training were only marginally available. Among the ones that could be
obtained were the Groningen corpus, a corpus of over 20 hours of read
speech with speakers reading short texts and sentences containing all pos-
sible vowels and all possible consonants and consonant clusters in Dutch,
and the Speech Styles corpus, a medium sized corpus containing spon-
taneous speech (monologues), semi-spontaneous speech (picture descrip-
tions), and read speech (see Appendix D for a more detailed description of
these corpora). However, as theses corpora have a small resemblance to the
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broadcast news domain, better matching corpora needed to be acquired. In
imitation of the Hub3 DARPA research program, a speech database con-
taining “journalistic dictation”, similar to the Wall Street Journal corpus
(WSJ0, Paul and Baker, 1992) was created, consisting of approximately 7
hours of read speech. This TNO-NRC speech database (see Appendix D.1)
was extensively used for global tuning of the speech recognition system. To
enable the training of acoustic models from BN data, the TNO-BN speech
database (see Appendix D.2) was eventually also constructed, containing
approximately 20 hours of speech from Dutch television broadcast news
shows.

5.3 Research topics

In Section 3.3.1 it was explained that the training of the recurrent neural
network (RNN) is computationally expensive and should preferably be done
using dedicated hardware. An average training run for a relatively small
network took days or even weeks, depending on the computer systems
used. Training time could be significantly reduced by creating a multi-
threaded version of the training software1. However, as training an RNN
still took days, it was decided not to spend too much time on acoustic
model training issues. Added to this, shortly after this research was initi-
ated, in March 2000, the first release of the “Spoken Dutch Corpus” (CGN,
see Appendix D.5) was published. It was expected that with this balanced
corpus, acoustic model training issues could be investigated far better.
However, as the preparation of such a large corpus for training is labor-
ious, the CGN corpus was considered as a valuable training source that
should be taken up in the near future, as discussed in Section 5.8.

In this context, the goals of the acoustic modelling part in this research,
were defined as follows:

• acquiring “baseline” acoustic models for Dutch using the TNO-NRC
speech database to enable the set-up of a basic LVCSR system for
Dutch.

• acquiring broadcast news specific acoustic models using the TNO-BN
speech database, that in a LVCSR set-up will be capable of produ-
cing recognition results that are good enough to address the target
research questions in this thesis.

• investigating whether acoustic modelling errors can be reduced by
applying model merging and altering RNN size as referred to in the
literature on acoustic modelling in the hybrid RNN/HMM framework.

1David van Leeuwen at TNO Human Factors developed a multi-threated version of AB-
BOT’s rnnTrain
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• defining a list of appropriate research topics given the experiences in
this research and the availability of the CGN corpus.

Before the results of all acoustic model training procedures are addressed,
first the training procedure in a RNN/HMM framework will be outlined as a
reference.

5.4 RNN/HMM training procedure

In Section 3.3.2, the training of acoustic models using the RNN architecture
was already outlined. The goal of the acoustic model training was described
as obtaining those RNN weights that minimise the error on a training set.
Given some acoustic training data, the training procedure involves the fol-
lowing steps:

1. Create feature vectors.

If necessary, the audio files in the training corpus are converted to
the desired format (16 Khz, 16 bits in this research) and passed to
the feature extraction procedure that creates for every frame of 256
samples a vector of 12 cepstral coefficients and log energy, using a
window of 512 samples. The 32 bit floating point format of the PLP
vectors are converted to byte coded values in a normalisation step.

2. Label the training data and create a training set.

Each frame in the training data is assigned a phone label, using a
forced alignment procedure. All sentences in the training data are
passed to the initially untrained or partly trained RNN (in the boot-
strap case), resulting in a phone probability stream per sentence.
Along with a manually generated word transcription of a single sen-
tence, the phone probability stream of a sentence is presented to a
finite state grammar decoder that uses a sentence-constraint finite
state grammar (FSG) to align the sentence words. After looking-up the
pronunciations of the words in the sentence, a first global alignment
of phones with the data is then available. The phone alignment is op-
timised by repeating the earlier FSG decoding step, this time however
by deploying a sentence-constraint finite state grammar created using
the pronunciations of the words (a phone FSG). When all phone align-
ments for a given training set have been made, the feature vector files
created in step [1] are effectively labelled and collected in a random-
ised training set that can be passed to the RNN training procedure
described in the next step.

3. Start the RNN training iterations.

Using the labelled training data from step [2], an RNN can be trained.
In this research the RNN consisted of 13 inputs (the number of PLP
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coefficients), 45 outputs (the number of phones in the phone set) and
256 state units (hidden layer). A single training procedure typically
consists of some 30 training epochs in which the RNN parameters are
gradually adjusted until an optimum is reached. After each epoch,
the actual state of the network can be saved, for example to enable
the generation of training statistics (phone error rate as a function
of network state, as envisaged in Figure 5.1). After the completion of
all training epochs, the resulting network can be passed to step [2] to
generate a probability stream that is closer to the actual distribution
in the training set, so that the phone alignments can be updated be-
fore a new set of RNN training epochs is started. Step [2] and [3] can
then be repeated until an optimum is reached. In the training runs per-
formed in this research, usually no substantial improvements could
be observed after two iterations.

4. Create phone models based on the training set.

With a (re-)labelled training set, the HMM phone models can be cre-
ated or re-estimated: the a priori phone probabilities that are used
to convert the posterior probabilities produced by the RNN to likeli-
hoods as required by the HMM framework (see Section 3.3.1), are com-
puted using the phone frequencies in the training set. The number of
states and transition probabilities of the HMM models are estimated
by measuring the mean duration of the phones in the labelled train-
ing set. After each training iteration, this procedure can be repeated
in order to adjust the transition probabilities.

After training, the performance statistics of an acoustic model given some
test data are obtained by performing a speech recognition run on the test
data using the acoustic model and a simple phone FSG. In this FSG, every
phone can be given an equal chance to be recognised, as is done in this
research. Alternatively, the FSG can be based upon the phone distribution
in the training data. The result of such a recognition run is a stream of most
probable phones given the speech input. These phone hypotheses can then
be scored2 against phone-based reference transcripts to obtain phone error
rate statistics.

5.5 Phone set

As long term forward and backward context is already modelled in the RNN,
a context-independent phone set was chosen for the acoustic models with a
few exceptions. The set is listed in Appendix B and is further referred to as
the DRUID phone set. Some context-dependency however was introduced
by including the [ øô ], [ eô ] and [ oô ] phones, as realisations of the [ ø ],
[ e ] and [ o ] phones that occur before the [ ô ] and are therefore realised

2In this research the sclite scoring software was used. See also Appendix C.2
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Figure 5.1: Phone Error Rate Distribution of training epochs in the
TNO-NRC training

differently. Also, the [ tj ] phone were added to account for the special
realisation of the diminutive suffix “-tje” as in “katje (English: little cat)”.
Concerning the vowels, the standard set of checked vowels and free vowels
were further included. The marginal vowels [ E ], [ EU ] and [ O ] were left
out as these occur infrequently in Dutch. As for the consonants, the set
included the standard set of plosives, fricatives (but without the [ G ], the
voiced counterpart of [ x ]), and sonorants. Finally, a phone representing
silence ([ sil ]) was included.

5.6 Training results

5.6.1 TNO-NRC

In the TNO-NRC training runs, 48 of the 52 speakers of the TNO-NRC speech
database were used for training. The other speakers were used for testing.
Instead of starting from scratch with an untrained RNN, an already trained
network, based on training runs described in Christie (1996), was used for
the first alignment of the training set (bootstrap weights). This was very
convenient as deploying an already trained network speeds up the training
procedure significantly.
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In Table 5.2 the statistics of this training run are listed. In Figure 5.1
phone error rates of all training epochs in the two iterations are plotted.
Both table and figure show that the phone error rate slowly improved as
training progressed: from 40.1% using the bootstrap weights to 39.5% after
a first training run of 32 epochs and finally 38.5% after a second training
run using improved alignments and phone durations.

In the last row of Table 5.2 the phone error rate (PER), and the per-
centages substitutions (SUB), deletions (DEL) and insertions (INS) using the
TNO-NRC weights on broadcast news data was added as a reference. For
this evaluation a set of 10 broadcast news shows from January–March
2002 was used. Segments containing non-speech or speech of a foreign
language were excluded from the test data. In total, the test data contained
approximately 3 hours of Dutch speech (See also Chapter 11). Given that
the TNO-NRC consisted of read speech, it was evident that the performance
of the TNO-NRC weights on broadcast news data with its large variations
in speech styles would be far worse than on the TNO-NRC test data itself.
However, it is striking that the number of phone substitutions increased
only marginally (14%) compared to the increase of the number of deletions
(51%). Although indeed deletions may be expected to be more frequent in
spontaneous speech, the magnitude of the difference is notable.
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Training PER SUB DEL INS
Bootstrap weights 40.1% 17.0% 19.5% 3.6%
After first iteration (wei-32) 39.5% 18.2% 17.5% 3.9%
After second iteration (wei-64) 38.5% 18.4% 16.7% 3.4%
Broadcast news evaluation 57.3% 21.5% 34.6% 1.1%

Table 5.2: TNO-NRC training statistics: phone error rate (PER), substitu-
tions (SUB), deletions (DEL) and insertions (INS) in the TNO-NRC test data
using the bootstrap weights and the weights resulting after a first and
second training iteration. In the last row, the performance of the best
TNO-NRC weights on a broadcast news evaluation set is given.

5.6.2 Groningen and Speech Styles

In Table 5.3 the evaluation results are listed for the best weights of the
TNO-NRC corpus, the Speech Styles corpus and the Groningen corpus. The
test data consisted of unseen data selected from the respective corpora.
The differences in phone error rates in these self-tests are a result of the
proportion of the within-speaker and across-speaker variation that exist in
the corpus and the amount of training data that is available to model the
variation. The Groningen corpus is a well balanced corpus of read speech
with a large number of training examples for each phone in a particular
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context. The amount of data in the Speech Styles corpus is high, but the
same applies for the amount of variation in the corpus, which explains the
high error rate: it contains both read speech, semi-spontaneous and spon-
taneous speech. Note that for the broadcast news evaluation the number of
deletions is again very high and the major source of recognition errors. The
results confirm the expectations toward the Groningen corpus and Speech
Styles corpus: these corpora do not match the data in the broadcast news
domain well as the models based on this data perform worse on the BN
test data than the baseline TNO-NRC models, in spite of the fact that the
TNO-NRC models were created using far less training data.
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Corpus PER SUB DEL INS
Groningen 26.5% 11.0% 11.5% 4.1%
TNO-NRC 38.5% 18.4% 16.7% 3.4%
Speech Styles 41.6% 17.1% 16.5% 8.0%
Groningen on BN 58.0% 26.5% 29.2% 2.3%
TNO-NRC on BN 57.3% 21.5% 34.6% 1.1%
Speech Styles on BN 59.9% 26.6% 31.7% 1.5%

Table 5.3: Evaluation statistics of the TNO-NRC, Speech Styles and
Groningen training on unseen test data selected from the same corpus
and on a set of 10 broadcast news shows (BN)

5.6.3 TNO-BN and Model merging

It was mentioned in Section 3.3.3 that the hybrid RNN/HMM approach al-
lowed for the combination of acoustic models by merging the output of
multiple networks. As the RNN is time-asymmetric (a standard HMM is not),
training the RNN with the training data both presented forwards and back-
wards in time produces different acoustic models. For instance, Hochberg
et al. (1994) showed that combining the information from both models can
improve performance substantially. To investigate the effect of model mer-
ging, forwards and backwards models were trained using the TNO-NRC
data and the TNO-BN data. At decoding time, the posterior probability
streams of the respective forwards and backwards models were merged
in the log domain. Table 5.4 shows that this procedure indeed improves
acoustic model performance significantly. Evaluated on the set of 10 news
broadcasts, phone error rates of the merged models are some 4–5% lower
then those of the forwards and backwards single models.

Assuming that merging models trained on different corpora and speech
types could also yield some performance improvement, different merging
schemes were applied that merged the probability streams of the avail-
able single and merged models. In Table 5.4 the performance on BN test
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data of single models and the best performing merged models are listed.
It shows that training with broadcast news material is beneficial as the
TNO-BN models outperform the baseline TNO-NRC models. Note that the
TNO-BN models were trained using 14 hours of training data, as the full 20
hours of data became available only later (see below). The best performance
is achieved by merging the forward TNO-BN model with the backward TNO-
BN model. Merging the merged TNO-NRC forward and backward models
with the merged TNO-BN models, in Table 5.4 referred to as TNO-NRC+BN,
could not further improve performance.
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Training PER SUB DEL INS
TNO-NRC (f) 57.3% 21.5% 34.6% 1.1%
TNO-NRC (b) 56.7% 20.5% 35.1% 1.1%
TNO-NRC (fb) 54.5% 18.3% 35.4% 0.8%
TNO-BN (f) 49.2% 16.7% 31.6% 0.9%
TNO-BN (b) 50.5% 17.3% 32.3% 0.8%
TNO-BN (fb) 47.3% 14.6% 32.1% 0.7%
TNO-NRC+BN (fb+fb) 49.3w% 14.8% 33.8% 0.7%

Table 5.4: Performance comparison with and without model combina-
tion. An “f” refers to a forward model, a “b” to a backward model and ’fb’
to a combined forward/backward model

5.6.4 Network size

Enlarging the size of the recurrent neural net in combination with adding
more acoustic training data (such as data from the CGN corpus), can also be
exploited in an attempt to improve current acoustic model performance. In
Cook and Robinson (e.g., 1997); Robinson et al. (e.g., 2002) it was reported
that increasing the network size can be worthwhile when large amounts of
training data (up to 100 hours and more) are available. Although training
data quantities up to 100 hours were definitely out of reach, the data in
the TNO-BN corpus could be augmented from 14 hours up to 20 hours of
broadcast news data. However, a standard acoustic model training with a
network size of 256 states yielded a performance degradation relative to
the same training procedure with less training data as shown in Table 5.5.
Enlarging the RNN to 1024 states yielded a drastic performance improve-
ment of almost 3% absolute, although run time of the speech recognition
system dramatically increased with it.



86 CHAPTER 5. ACOUSTIC MODEL TRAINING

'

&

$

%

Training hours PER SUB DEL INS
TNO-BN (256) 14 47.3% 14.6% 32.1% 0.7%
TNO-BN (256) 20 48.5% 15.5% 32.3% 0.7%
TNO-BN (1054) 20 44.7% 12.8% 31.2% 0.6%

Table 5.5:

5.7 General discussion and conclusions

As expected, the acoustic models trained using the corpus that matched the
target domain the best, broadcast news (TNO-BN), achieved the best PER on
broadcast news test data. The gain in PER compared to the best perform-
ing off-domain model, TNO-NRC, was almost 8% absolute. The performance
of the TNO-BN model, could further be improved (another 2% absolute) by
merging the forward trained TNO-BN model and the backward trained TNO-
BN model. Adding more data to the broadcast news training data (an addi-
tional 6 hours) without enlarging the size of the RNN (256 units), worsened
the performance of the resulting model. Only when the network size was
enlarged to a hidden layer of 1024 units, did PER drop dramatically with
2.5% absolute. However, besides the lower error rate a substantial increase
in speech recognition processing time was also observed with this large
RNN.

Performance of the models in this chapter was only reported in terms
of PER. Although this metric was suitable for the comparison of the sub-
sequent models, it cannot easily be related to a general notion of acoustic
model “quality”. A phone error rate of almost 50% may seem rather high,
but it must firstly be recognised that this measure is obtained by defining
the speech recognition output as the stream of most probable phones given
some speech input. In a LVCSR setup, it is not the stream of most probable
phones, but the complete phone probability stream in combination with
the language model, that determines the recognition of word sequences.
As will be shown in Chapter 11, a phone error rate of some 45–50% broadly
corresponds to some 35–40% word error rate given a reasonably stand-
ard language model based on 300M words of text data. It may therefore
be concluded that with the relatively small amount of training data and
without spending too much time on the possible acoustic modelling re-
lated issues that are discussed in the next section, Dutch acoustic models
could be trained that already allow for a very reasonable speech recogni-
tion performance. At least, performance of the models was good enough to
address the targeted research questions in this thesis.



5.8. SUMMARY AND FUTURE WORK 87

5.8 Summary and future work

In this chapter, the acoustic modelling part of the speech recognition devel-
opment process using the hybrid RNN/HMM framework was addressed. It
was explained that as the Spoken Dutch Corpus (CGN) was not yet available
at the outset of this research, the acoustic models for this research were
based on a relatively small TNO-BN broadcast news corpus especially cre-
ated for this research, that nonetheless provided a reasonable performance
in terms of phone error rate on the broadcast news test data. By merging
the output of the RNN acoustic models trained forwards and backwards in
time, performance could even be improved with some 4–5% relative.

Increase of RNN size

By enlarging the size of the RNN from 256 to 1024 state units, model per-
formance could be further improved, however, at the cost of a dramatic
increase in speech recognition run time. Choosing a 512 hidden unit net-
work instead of a 1024 network may reduce the increase in processing
time. A 512 unit network may be expected to be sufficiently large for the
amount of available training data. If the CGN corpus is to be fully deployed
for acoustic model training, moving to a 1024 network may be considered
again.

Exploiting the Spoken Dutch Corpus

In section 5.2, the possibility of training separate acoustic models for spe-
cific acoustic conditions, was already referred to, especially the training
of gender and bandwidth dependent models, in order to improve system
performance. With the relatively small amount of available training data
gender and bandwidth dependent modelling was not considered for this re-
search. However, by exploiting the CGN corpus, the training of such models
comes within reach3. The huge amounts of data that are provided with the
corpus, offer many other opportunities for acoustic modelling research. But
as the speech data in the corpus is collected from a variety of domains, the
question is how this data can best be exploited. One could hypothesise that
deploying all available training data of the corpus for the training of acous-
tic models for the BN domain, will not result in a better performance than
the current one obtained using a relatively small portion of domain spe-
cific training data. Data quality may be more important than data quantity
with this respect. A more realistic approach could be to divide the data
into a number of global domains. Domains that have a certain resemblance

3Note that band detection and gender detection software is required as well in order
to use gender/bandwidth models in real-life (broadcast news) transcription tasks. Baseline
audio segmentation software can be obtained through NIST (see Appendix C)
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with the intended task domain can then be added to the training set. Al-
ternatively, different models could be trained and merged at run-time to
obtain weighted phone probability estimates based on different informa-
tion sources. At least, exploiting the CGN corpus for investigating these
and other issues regarding the training of Dutch acoustic models for differ-
ent task domains, is promising and is regarded as one of the main topics
for future research.



Chapter 6

N-gram language modelling

N-gram language models were introduced in ASR in the 1970’s and still
remain state-of-the-art. Also the ABBOT recogniser used in this research de-
ploys Dutch n-gram language models for word recognition. Before the train-
ing of Dutch language models and related procedures are addressed in de-
tail, this chapters will first provide the basic concepts of n-gram language
modelling in speech recognition.

6.1 Introduction

In the previous chapters, a description was given of how the Dutch acous-
tic models were created and their performance was discussed in terms of
phone error rates. As was pointed out in the introduction to this thesis,
a language model is necessary to enable the recognition of words. In this
chapter, a brief introduction to n-gram languagemodelling in speech recog-
nition is presented as background information for the research described
in the following chapters. For a more detailed and comprehensive introduc-
tion to language modelling see Jurafsky and Martin (e.g., 2000) or Jelinek
(1976). See Chen and Goodman (1998) for an extensive comparison and
detailed mathematical formulation of the described smoothing techniques.

In word recognition, the task is to find the string of words or sentence
(W ) that is most likely to have been spoken on the basis of the acoustic
analysis of the speech input: the acoustic observations (O). In a probabil-
istic framework, the probability of a sentence being produced given some
acoustic observations is typically expressed as p(W |O). The most probable
sentence (Ŵ ) is then found by computing p(W |O) for all possible sentences
given the vocabulary and choosing the one with the highest probability:

Ŵ = argmaxP(W |O) (6.1)

Using Bayes’ rule, the conditional probability of a sentenceW being spoken,
and assuming that certain acoustic observations O were made, can be

89



90 CHAPTER 6. N-GRAM LANGUAGE MODELLING

broken down into:

P(W |O) = P(O|W) · P(W)
P(O)

(6.2)

where p(O|W) is the likelihood of a specific acoustic observation given a
sentence W , p(W) the prior probability of the sentence W to be produced,
and p(O) the probability of observing the given speech input. As for the
computation of the most probable sentence given a certain speech input,
p(O) evidently does not change, p(O) may be regarded as a normalisa-
tion factor that can well be removed from the computation. In Chapter 5
it was shown that p(O|W) can be estimated using an acoustic model. In
the framework of the ABBOT system, the recurrent neural network is de-
ployed to generate scaled likelihoods instead of regular likelihoods. The
prior probability p(W) can be estimated using language models, in speech
recognition, typically n-gram language models. Eventually, the task to find
the sentence that is most likely to have been spoken given the acoustic
analysis of the speech input (Ŵ ) can be formulated as:

Ŵ = argmaxP(W |O) =
AM︷ ︸︸ ︷

P(O|W) ·
LM︷ ︸︸ ︷

P(W) (6.3)

6.2 N-gram language models

The prior probability of a sentence p(W) in speech recognition is typically
estimated using n-gram models. Using the chain rule of probability, p(W)
can be formally broken down as:

p(W) =
n∏
i=1

p(ωi|ω1, . . . ,ωi−1) (6.4)

where p(ωi|ω1, . . . ,ωi−1) is the probability that the word ωi was spoken,
immediately following the preceding word sequence ω1, . . . ,ωi−1, that is
referred to as the history of the word ωi. Computing the probability of a
word given a long history of words is however not feasible. It theoretically
depends on the entire past history of a discourse. The N-gram language
model attempts to provide an adequate approximation of P(ωi) by refer-
ring to the Markov assumption that the probability of a future event can
be predicted by looking at its immediate past. N-gram language models
therefore use the previous n − 1 words (typically one or two words) as an
approximation of the entire history. That this approximation is reasonably
adequate can be derived from the fact that n-gram language models were
introduced in speech recognition in the 1970’s and still remain state-of-the-
art. For a two-word history, trigram models can be generated by reformu-
lating equation 6.4 as:

p(ω) ≈ p(ω0) · p(ω1|ω0) ·
n∏
i=2

p(ωi|ωi−2,ωi−1) (6.5)
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Note that at the beginning of sentences in the training data an start-of-
sentence mark “〈s〉” is usually introduced (omega0 in equation 6.5) to en-
able the prediction of a word starting as a first word in a sentence. As no
probability is assigned to 〈s〉 itself (it is interpreted as ω0) it is necessary
to place an end-of-sentence mark “〈\s〉” at the end of sentences (interpreted
as ωl+1 where l is the sentence length). Otherwise, the sum of the probab-
ilities of all strings of a given length would sum to 1 and the sum of the
probabilities of all strings is then infinite. N-gram probability estimates can
be computed using the relative frequencies, called maximum likelihood es-
timates (ML): the normalised counts of n-grams in a training corpus. For a
trigram model that is:

p(ω3|ω1,ω2) = f(ω3|ω1,ω2) � C(ω1,ω2,ω3)
C(ω1,ω2)

(6.6)

or in a generalised form:

p(ωi|ωi−1
i−n+1) =

c(ωi−1
i−n+1)∑

wi c(ω
i−1
i−n+1)

(6.7)

As even very large training corpora can never cover all possible n-grams
for a language, it is possible that perfectly acceptable n-grams are not en-
countered in the training corpus. A language model based on equation 6.6
would assign a zero probability to such n-grams. So regardless of the evid-
ence provided by the acoustic signal in favour of an n-gram not encoun-
tered in the training data, the n-gram will be disallowed by the language
model. Moreover, it is well-known that using relative frequencies as a way
to estimate probabilities, produces poor estimates when the n-gram counts
are small. To create a more uniform distribution, it is necessary to smooth
these zero-probability and low-probability n-grams.

6.3 Language model smoothing

Smoothing is an important issue in language modelling and a number of
smoothing algorithms are proposed in the literature. The purpose of LM
smoothing is to obtain more accurate probabilities of p(ω) by adjust-
ing the ML estimates that are obtained using the relative frequency ap-
proach. In practice this often means, reevaluating or discounting the n-
gram counts in the corpus. Discounting refers to lowering non-zero counts
according to some discounting function to save some probability mass that
can be assigned to zero-counts and lower counts using a re-distribution
function. The discounting function and the re-distribution function are typ-
ically combined using either a back-off strategy (Katz, 1987) or an interpol-
ation strategy (Jelinek and Mercer, 1980). Both strategies use lower-order
distributions for determining the probability of n-grams with zero or low
counts.
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6.3.1 Discounting n-gram frequency counts

An example of a simple, and generally not very well performing discounting
scheme is additive smoothing (Jeffreys, 1948) that prevents the occurrence
of zero frequencies by pretending that each n-gram occurs δ times (0 <
δ ≤ 1) more than it does:

r∗ = r + δ (6.8)

where r is the original n-gram count and r∗ the discounted count. In
Table 6.3.1 on page 94, bigram frequencies of frequencies (first column),
counts and discounted counts are listed for a newspaper corpus of the
years 1999–2001 containing some 300M words. Given a 65K vocabulary
(V ), the estimated number of bigrams that were not seen in the corpus is
V2 −N, where N is the number of seen bigrams. When additive smoothing
is used with δ = 1 (also referred to as add-one smoothing), the frequency
counts are discounted as shown in the third column of the table.

A discounting scheme that is central to many other smoothing tech-
niques is Good-Turing discounting (Good, 1953). In Good-Turing discount-
ing, nonzero counts are discounted according to:

r∗ = (r + 1)nr+1
nr

(6.9)

where r∗ is the discounted count, nr the number of n-grams that occurred
exactly r times (frequency-of-frequency, the first column in
Table 6.3.1). The Good-Turing estimate for zero frequency n-grams is than:

r∗ = n1

n0
(6.10)

which can be converted to a probability by normalising over the original
number of counts in the distribution (N):

pgood turing = r∗

N
(6.11)

Note that the Good-Turing estimate cannot be used when there are fre-
quencies of frequencies in the distribution with a zero count. Therefore
only lower counts (e.g., frequencies in the range of 0 to 7) are discoun-
ted this way, which should not be problematic as the larger counts are
assumed to be reliable. The discounting range for Good-Turing discounting
is normally defined by setting lower exclusion cutoffs for low counts (typ-
ically n-gram counts of 1, referred to as singletons) and upper discounting
cutoffs. n-grams with counts above the upper discounting cutoffs are not
discounted but receive the maximum likelihood estimates. In Table 6.3.1
the Good-Turing discounted counts are listed in the fourth column.

Another frequently used discounting scheme is Witten-Bell discounting
(Witten and Bell, 1991) that estimates the probability of zero-frequency n-
grams by looking at n-grams that were seen at least once, instead of exactly
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once as with the Good-Turing method. The idea behind this method is that
zero-frequency n-grams can be modelled by the probability of seeing an
n-gram for the first time. This probability can be obtained by counting the
number of unique words, or word types (T ), that follow a specific history.
For example, the number of unique words following the word “ik (English:
I)” in the Dutch newspaper corpus, is 19,347. Given a vocabulary of 65K
words, the number of unseen bigrams starting with “ik” (Z), is then 45,653.
Using N

N+T , where N is the original number of n-gram counts in the dis-
tribution, as normalisation factor, counts are discounted in the following
way:

r∗ =
{T

Z
N

N+T if r = 0

r N
N+T if r > 0

(6.12)

In Absolute discounting (Ney et al., 1994) a fixed discount D (0 ≤ D ≤ 1)
is subtracted from each non-zero count and re-distributed over unseen n-
grams. The discount D can be estimated using the training data, but can ap-
proximated by using the estimate proposed by Ney et al., which is also used
for the computation of the discounted counts in column five of Table 6.3.1:

D = n1

n1 + 2n2
(6.13)

6.3.2 Model combination: interpolation and backoff

In practice, the discounting schemes discussed above are applied within a
model combination framework, either using a backoff strategy or by lin-
ear interpolation of higher-order n-gram models with lower-order n-gram
models. Both strategies use the notion that lower-order models can provide
useful information for the computation of the probability of higher-order
models, especially when there is no or insufficient data for estimating a
probability for a higher-order model. With interpolation, often referred to
as Jelinek-Mercer smoothing (Jelinek and Mercer, 1980), the unigram, bi-
gram and trigram probabilities are mixed together, weighted by a set of
weights (λ). For the estimation of a bigram probability, the interpolation
formula would be:

pip(ωi|ωi−1) = λpML(ωi|ωi−1)+ (1− λ)pML(ωi) (6.14)

As proposed by Brown et al. (1992) the linear interpolation can be defined
recursively where the 1st order model (or alternatively, a uniform distribu-
tion as the 0th order model) ends the recursion:

pip(ωi|ωi−1
i−n+1) =
λωi−1

i−n+1
pML(ωi|ωi−1

i−n+1)+ (1− λωi−1
i−n+1

)pip(ωi|ωi−1
i−n+2) (6.15)
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N r r6
add r6

gt r6
abs r6

wb
4,208,024,495 0 1 0.0024 0.0028 0.4226

10,176,147 1 2 0.4599 0.315 0.9972
2,339,811 2 3 1.3537 1.315 1.9943
1,055,776 3 4 2.3290 2.315 2.9915
614,718 4 5 3.2978 3.315 3.9887
405,438 5 6 4.3192 4.315 4.9858
291,862 6 7 5.2729 5.315 5.9830
219,850 7 8 6.3468 6.315 6.9801
174,419 8 9 8 7.315 7.9773
140,753 9 10 9 8.315 8.9745
117,365 10 11 10 9.315 9.9716
99,017 11 12 11 10.315 10.9688
84,707 12 13 12 11.315 11.9660
74,143 13 14 13 12.315 12.9631
65,049 14 15 14 13.315 13.9603
57,716 15 16 15 14.315 14.9574
51,382 16 17 16 15.315 15.9546
46,001 17 18 17 16.315 16.9518
41,792 18 19 18 17.315 17.9489
38,154 19 20 19 18.315 18.9461

Table 6.1: Bigram frequencies of frequencies and discounted frequency
estimates given a Dutch newspaper corpus of 300M words, using Add-
one smoothing, Good-Turing discounting, Absolute discounting and
Witten-Bell discounting (conditioned on the history “ik (English: I)”.
The number of unseen bigrams was estimated by subtracting the total
amount of seen bigrams types from the amount of possible bigrams (V2)

When the maximum likelihood estimates are obtained, those λ’s that max-
imise the probability of some data can be found with the Baum-Welch al-
gorithm (Baum, 1972) and some held-out data (held-out interpolation) or
rotating parts of the training data (deleted interpolation). Note that the op-
timal λ values will be different for each history ωi−1

i−n+1. As training each λ
independently is not feasible, a so-called bucketing method can be applied,
that partitions the n-grams into disjoint groups, based upon the frequency
of the n-gram predicted from the lower-order models (see e.g., Bahl et al.,
1989).

Katz smoothing (Katz, 1987) is regarded as the canonical example of
backoff smoothing. In this smoothing method, one “backs off” to lower-
order n− 1-grams when zero-count n-grams are encountered. The key dif-
ference between interpolation and backoff is that for n-grams with non-
zero counts, interpolation still uses information from the lower-order dis-
tributions whereas backoff does not. For bigrams, the backoff method can
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be represented as:

Ckatz(ωi
i−1) =

{
r6 if r > 0

α(ωi−1)pML(ωi) if r = 0
(6.16)

In order to prevent that by applying backoff the number of counts in the
n-gram distribution change, the non-zero counts need to be discounted ac-
cording to a discounting scheme, providing r6. The counts that are leftover
after discounting can then be distributed among the zero-counts according
to the lower-order distribution, which in the bigram case, is the unigram
distribution. The value α(ωi−1) serves as a normalisation factor (back-off
weight) that must ensure that the total number of counts in the distribution
remains unchanged. The α value is estimated by computing the leftover
probability mass (1 minus the total probability mass) for a given n-gram
context and normalising this mass by the leftover probability mass of the
n− 1-gram context as follows (from, Chen and Goodman, 1998):

α(ωi−1) =
1−∑ωi:c(ωi

i−1)>0
pkatz(ωi|ωi−1)∑

ωi:c(ωi
i−1)=0 pML(ωi)

(6.17)

which can be rewritten as:

α(ωi−1) =
1−∑ωi:c(ωi

i−1)>0
pkatz(ωi|ωi−1)

1−∑ωi:c(ωi
i−1)>0

pML(ωi)
(6.18)

Chen and Goodman implemented the described smoothing algorithms in
both backoff and interpolated versions and did an extensive comparison of
the subsequent smoothing versions. One of their findings was that a mod-
ified version of Kneser-Ney smoothing consistently outperformed all other
smoothing algorithms. Kneser-Ney smoothing (Kneser and Ney, 1995) is an
extension of absolute discounting and tries to optimise the combination of
lower-order models with higher-order models in cases where there are only
a few or no counts present in the higher-order distribution. This is often
illustrated in the literature using the “San Francisco” example, that could
well be replaced for Dutch readers by the “Den Haag (English: The Hague)”
example. “Den Haag” is a frequent bigram, the unigram “Haag” occurs al-
most only after the word “Den”. As the unigram probability p(Haag) will
be high, a discounting scheme will assign a high probability to the word
“Haag” after previously unseen bigram histories One can argue that this is
not desirable as “Haag” is seen only in a single history. In order to optimise
the unigram probability in such cases, Kneser-Ney smoothing does not use
the unigram probability that is proportional to the number of occurrences
of the word, but instead to the number of different words it follows:

pkn(ωi) = N1+(•ωi)
N1+(••) (6.19)
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whereN1+(•ωi) is the number of different wordsωi−1 that precedeωi and
where N1+(••) =

∑
ωi N1+(•ωi). Chen and Goodman proposed a variation

of Kneser-Ney smoothing, referred to as modified Kneser-Ney smoothing
that uses three different parameters, D1, D2 and D3+ applied to n-grams
with one, two and three or more counts respectively, instead of a single
discount D for all nonzero counts. In analogy with the estimate for a single
D as described with absolute discounting above, these three parameters
can be obtained using the equations:

Y = n1

n1 + 2n2

D1 = 1− 2Y n2

n1

D2 = 2− 3Y n3

n2

D3+ = 3− 4Y n4

n3

(6.20)

In Chapter 11, the performance of Good-Turing discounting, Witten-Bell
discounting, Absolute discounting and modified Kneser-Ney smoothing is
compared in a speech recognition evaluation of Dutch news shows. Mod-
ified Kneser-Ney smoothing gave the best results in terms of word error
rates, although the difference was very small.

6.4 Language model adaptation

The n-gram approach is generally very successful provided there is a suf-
ficient amount of training data available that is similar to a reasonably
static task domain. When the task domain is dynamic and differs from
the training conditions, achieving a good performance becomes more dif-
ficult. A number of techniques have been proposed that use mixtures of
language models to improve language model performance under such cir-
cumstances. A typical approach is to mix language models created on a
small portion of domain specific training data with language models based
on a large, less domain specific, training corpus. For example, a general
language model based on large amounts of newspaper data could be inter-
polated with a language model built from a small corpus of broadcast news
transcripts for the broadcast news task domain. Interpolation weights can
be fixed by estimating these using some example data, or alternatively, can
be adapted dynamically as a function of the running history (e.g., Weintraub
et al., 1996). Deploying the running history to improve a baseline language
model is also used in the dynamic cache model approach, that interpolates
the baseline model with a unigram cache language model based on a his-
tory of N recently observed words, in an attempt to model the phenomenon
that such words have a higher probability of re-occurring (e.g., Clarkson
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and Robinson, 1997; Kuhn and Mori, 1990). A related approach uses trig-
ger pairs, to capture information from the long-distance document history
by changing the probability estimate of a trigger sequence B when preceded
by a trigger A (Rosenfeld, 1996). Bellegarda (2000) proposed a hybrid lan-
guage modelling approach that models word co-occurrence in multispan
language models. Here, latent semantic analysis (LSA, see e.g., Jurafsky and
Martin (2000), page 663) is embedded into the standard n-gram modelling
framework.

Instead of using different corpora for mixture language models –typi-
cally one small corpus that is close to the target domain and a large one
that is less specific–a single corpus, partitioned manually or automatic-
ally according to the text content, can be used. In Clarkson and Robinson
(1997) for example, document clusters are created automatically using a
clustering algorithm that computes the distance between a document and
a cluster based upon the perplexity of a language model constructed from
the cluster with respect to the document. Gotoh and Renals (2000) classify
documents according to their vector representations (see also Chapter 13)
using k-means clustering and in Seymore and Rosenfeld (1997) (semi-) auto-
matic clustering is performed using topic trees. Alternatively, a corpus can
be partitioned manually when document labels are available, which is usu-
ally the case with newspaper corpora.

Given a set of either manually or automatically generated document
clusters, component language models can be trained. As these language
models are trained on smaller text portions, the risk of data sparseness be-
comes more apparent: the amount of data may be too small to train robust
n-gram models. In practice, there is a trade-off between data sparseness
and domain similarity. When a component LM closely matches a target do-
main, it may outweigh the fact that it was trained using a relatively small
amount of training data. Furthermore, the effect of data sparseness can be
minimised by mixing component language models with a model that has
been trained using the complete training corpus.

In Clarkson and Robinson (1997), the component language models are
mixed by assigning weights to each of the component language models.
These weights are estimated using the Expectation-Maximization (EM, see
e.g., Jelinek and Mercer (1980)) on the basis of previously seen text. Among
others Seymore and Rosenfeld (1997) and Gotoh and Renals (2000) apply
information retrieval techniques to find the clusters that best match the
topic of (a piece of) data in the task domain. Such a scheme requires the
audio data being (pre-)segmented according to topic or to a specific time
window. Evidently, a dual-pass decoding strategy is needed: first, an ini-
tial hypothesis transcription is generated using a baseline language model;
next, this transcription is used to find the best matching document clusters
so that finally an improved transcription can be generated using the topic-
based mixture language model.
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6.5 Evaluation of language models: perplexity

In order to measure the appropriateness of different language models for a
specific speech recognition task, one could perform a set of speech recog-
nition evaluations and determine on the basis of the respective word error
rates (WER) which language model has the lowest WER and may therefore
be considered as the most suitable for the task. However, as performing
speech recognition evaluations is computationally expensive, such an ap-
proach is not very attractive. Moreover, word error rates are dependent
on the speech recognition system which makes a comparison of language
models across different speech recognition systems difficult. Therefore,
language models are commonly evaluated according to their cross-entropy
or perplexity on test data.

Given a language model M and a test set T , the probability of the test
data given the model can be computed by taking the product of the prob-
abilities of all sentences (t1, . . . , tT ) in the test set:

pM(T) =
T∏
i=1

pM(ti) (6.21)

When comparing two language models given some test set, the language
model with the highest pM(T) can be regarded as the model that best
matches the test set. From information theory it is known that − log2 p(T)
bits are needed to compress a text T (Cover and Thomas, 1991). The cross-
entropy H of a language model on the test set T containing WT words, can
then be defined as:

Hp(T) = − 1
WT

log2 p(T) (6.22)

and can be interpreted as the average number of bits that are needed to
encode each of the words in the test data using the language model. The
perplexity metric PP can be interpreted as the inverse of the average prob-
ability that is assigned to each word in the test set using the model and is
defined as:

PPp(T) = 2Hp(T) (6.23)

or in an alternative form:

PPp(T) = 1

(
∏T

i=1 p(ωi|ω1 . . .ωi−1))
1
T

(6.24)

Using the cross-entropy or perplexity metric, language models can easily be
compared without the need of going through a complete speech recognition
evaluation. Given some test data that are realistic samples of the speech
recognition task domain, the language model that has the lowest cross-
entropy or perplexity may be expected to yield the best performance in a
speech recognition task. In Chen et al. (1998) and Klakow and Peters (2002)
it was shown that the correlation between word error rate and perplexity is
reasonably strong.
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6.6 Summary

In this chapter, a brief overview of n-gram language modelling was given as
a reference for the next chapters that concern the language modelling part
of the development of a Dutch speech recognition system. The basic idea
of n-gram modelling in speech recognition was explained and a number
of widely used smoothing techniques and model combination techniques,
interpolation and backoff, were described briefly. Next, the adaptation of
language models to varying task domains was addressed. A number of lan-
guage model adaptation schemes were mentioned. Finally, cross-entropy
and perplexity, the most widely used evaluation metrics for language mod-
els were explained.
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Chapter 7

Data Collection

To enable the training of Dutch language models, large amounts of Dutch
example text data are needed. This chapter describes the Dutch text data
that were collected for training the language models for the broadcast news
domain, including newspaper text, teletext subtitling information and the
news-reader’s auto-cues.

7.1 Introduction

For training robust n-gram statistical language models capable of model-
ling the great number of variations occurring in spoken language, large
amounts of text data are needed, preferably data that has a close resemb-
lance with the target domain. “There’s no data like more data”, is a saying
in automatic speech recognition, but recently the focus on data quantity
is slowly shifting toward data quality as more and more data is becoming
available. Through the Linguistic Data Consortium (LDC, see Appendix C.1)
for example, billions of words of (American) English news wire data and
millions of words of broadcast news transcripts can be obtained (e.g., the
English Gigaword Corpus, containing 12 GB of normalised English news
wire text). With these amounts of training data, the advantages of acquir-
ing even more data is expected to decrease. In language model vocabulary
construction, Rosenfeld (1995) showed that better vocabularies could be
constructed by focusing on data quality: best results were obtained when
the data was carefully selected using only a fifth of the available data (see
also Chapter 9). Adda et al. (1999) for instance also stress the importance
of representative training data (data quality) as opposed to large amounts
of training data (data quantity): texts of a 700M words newspaper database
that did not lower the perplexity of the language model were eliminated.

Since the international large vocabulary speech recognition and spoken
document retrieval research community directed its program largely to the
BN domain (e.g., see the DARPA Hub4 benchmark tests, the TREC SDR
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tracks and the TDT research project), large amounts of domain specific
training data have become available through the LDC: both acoustic train-
ing data and text data (newspaper data and broadcast news transcripts) for
language model training (e.g., see Graff, 2002). At the outset of this re-
search, the amounts of training data available for English were not in reach
for Dutch. Existing Dutch text databases, such as the ANNO-corpus (640K
words, Schuurman, 1997), the CGN corpus (10M words, Oostdijk, 2000) and
INL-corpora (some 130M words, Van Dalen-Oskam et al., 2002)1, are either
too small for languages modelling purposes or not adequately available2.
Therefore, for the training of Dutch language models, the first goal had to
be improving data quantity: acquiring as much text data as possible, prefer-
ably specific to the domain of focus in this research: the broadcast news
domain. The most evident source to collect was newspaper data but also
other text sources were explored: teletext subtitling, auto-cues of broadcast
news programs and text data from the Internet. The aim was to set-up a rel-
atively large Dutch text database, primarily suitable for language modelling
purposes, that could be made available for Dutch LM research. This data-
base eventually became the “Twente Nieuws Corpus3” (TwNC). It contained
370M words when this thesis was completed and is still growing. Below, the
text data in the corpus is described.

7.2 Newspaper data

PCM publishers4, an organisation that administers the exploitation rights
of Dutch newspapers and magazines, is providing a daily feed of newspa-
per articles (some 700 articles per day). Earlier, newspaper data from the
years 1994-2002 was supplied from the following Dutch newspapers and
magazines:

• Volkskrant

• NRC Handelsblad

• Algemeen Dagblad

• Trouw

• Parool

• Dortsch Dagblad

• Magazines: among others Elsevier and HP de Tijd

1See also the Bouma and Schuurman (1998) for details about existing Dutch corpora
2Text data of the INL for example can only be searched at INL using a search engine
3The Twente Nieuws Corpus is currently available through the University of Twente but

will eventually be made available through the LDC.
4see Appendix C.1
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The newspaper/magazine text data (referred to as “newspaper data”) was
formatted in SGML. Due to editorial differences this format was not con-
sistent over all titles and it needed to be converted to a uniform format (in
XML). In the SGML format additional information about the individual art-
icles was included. For example, an article could have a so called “human
transcription” with an article classification (e.g., “Science; Recreation; Trav-
eling” or “International Law; International Armed Conflicts”), geographic
names and organisations mentioned in the article and in which section (e.g.,
“Sports” or “Economics”) the article was published in the newspaper. This
information was preserved with the conversion to the XML format, since it
can be used for a controlled selection of text data (e.g., to train language
models for different domains).

7.3 Broadcast news transcripts

The collection of newspaper data provided a good starting point for the
creation of language models. However, to obtain training data more similar
to the broadcast news domain, other text sources were explored. Obviously,
accurate broadcast news transcripts would be best suited for LM training
but these are very costly to develop. Teletext subtitling of broadcast news
programs however, can relatively easily be collected5 and resembles the
spoken text in broadcast news shows (or other television items that are
subtitled), although in a somewhat abbreviated form (see below), reason-
ably well. Since 1998 teletext subtitling information has been collected of
Dutch broadcast news programs (NOS Acht Uur Journaal, Jeugdjournaal)
and news related programs (2Vandaag, NOVA). The teletext subtitling in-
formation was captured as raw text. To structure the subtitling inform-
ation it was converted to a standard XML format containing labels for a
date, a news-reader (if known), separate stories and sentences. Both stories
and sentences also have a start-time and an end-time (parallel to the time
of broadcast). Another Dutch text source that could be collected were auto-
cues from broadcast news programs provided by the Dutch National Broad-
cast Foundation (6). In theory, auto-cues should provide a perfect match of
what is actually said by the news-reader, but news-readers sometimes de-
viate from the cues to a greater or lesser degree. Moreover, the texts of
reporters on location are normally not provided. Nevertheless, the auto-
cues were regarded as a welcome addition to the training data set. The
auto-cues were received in PDF format and converted to a standard XML
format similar to the teletext material.

To obtain more insight into the usability of teletext subtitling and auto-
cues for language modelling, it was examined how closely the teletext sub-
titling and auto-cues match a manual transcript of broadcast news pro-

5Teletext subtitling was collected using a QQS teletext capturing card (http://www.qqs.
nl)

6see Appendix C.1
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grams. Taking the three different sources side by side, a number of things
could be observed:

• Due to a minimum of available space for subtitles on a screen, the
number of words in teletext subtitling transcripts are cut down dras-
tically. Phrases are often mixed up completely in an attempt to say the
same with less and often other words. Teletext subtitling does cover
speech in live commentaries.

• Obviously, the auto-cues do usually not contain transcripts of speech
in live commentaries, so a number of lines will be missing in com-
parison with manual transcripts of a news program. However, those
that are not missing seem to match the manual transcript (what was
actually said) reasonably well.

To compare the resemblance of auto-cues and manual transcript, both ver-
sions of a single broadcast news program were taken. First, an alignment
was done by hand on the phrase level to create pairs of phrases. Next, a
word alignment was performed using dynamic programming (DP) to score
these pairs of phrases. Empty phrases in the auto-cue transcript (possibly a
text of a reporter on location) were excluded from the scoring computation.

In Table 7.1 the results are shown for the alignment procedure. Only 11%
of the words in the auto-cues do not correspond with the manual transcript
and half of the phrases were exactly the same. The news-reader in this news
program apparently stuck closely to his or her cues. A closer look at the
auto-cues transcript explains why most of the mismatches (almost 5%) are
due to deletions: auto-cues are often a little short-handed. For example, the
actual spoken phrase “Dames en heren, ik wens u nog een prettige avond
(English: Ladies and gentleman, have a nice evening)” is abbreviated as
“Goedenavond (English: Good evening)”. As far as it was possible to draw a
conclusion from a comparison of only one news program and also keeping
in mind that results are news-reader dependent, auto-cues transcripts seem
to be fairly close to manual transcripts, as far as the news-reader’s text is
concerned.

'

&

$

%

Total words 1679
Insertions 39 2.3%
Substitutions 67 4.0%
Deletions 82 4.9%
Total errors 188 11.2%
Total sents. 124
Sent. errors 62 50.0%

Table 7.1: Alignment score of manual transcript and auto-cues tran-
script of one broadcast news program
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As in the teletext transcript the phrases are mixed up and other words
are used, performing a word alignment is not very useful. When going
through the transcripts manually, the resemblance with manual transcripts
appears to be high with respect to content. See for example the following
sentences, one taken from the manual transcript and one from the corres-
ponding teletext transcript ([DEL] in the teletext sentence means that the
corresponding word in the manual sentence should be “deleted” when a
word alignment had been performed).

• er werden in de loop van het onderzoek drie mensen gearresteerd
maar die bleken niets met de zaak te maken te hebben (English: Three
people were arrested during the investigation, but it became apparent
that they had nothing to do with the case) - manual transcript

• er werden [DEL] [DEL] [DEL] [DEL] [DEL] [DEL] drie mensen opgepakt
maar die hadden niets met de zaak te maken [DEL] [DEL] (English:
Three people were caught but they had nothing to do with the case) -
teletext subtitling

Given the high similarity between manual transcripts and auto-cue tran-
scripts, the latter can be a useful substitute for manual transcripts when
these are unavailable. The texts not spoken by the news reader are how-
ever left aside. Teletext transcripts are far less suitable for n-gram training
since phrases are shortened and mixed up with regard to the original ver-
sion. On the other hand, teletext transcripts can be regarded as a useful
global representation of the content of a news program. Moreover, since
time information is included in teletext transcripts, these can be useful for
substituting speech recognition transcripts in a spoken document retrieval
task.

7.4 Internet

For some time, text data was automatically downloaded daily from some
Dutch newspaper sites7 on the Internet. It was however decided to stop
this procedure: firstly, because the Internet data largely overlaps the news-
paper data that was already received; secondly, because the structure of
these Internet pages changed frequently, as a result of which the automatic
download process had to be checked regularly.

7.5 Summary and conclusions

For the training of Dutch language models, about 370M words of text data
were collected from various sources:

7e.g., Volkskrant: http://www.volkskrant.nl; NRC Handelsblad: http://www.nrc.nl;
ANP: http://www.anp.nl
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• Newspaper data provided by PCM publishers (360M words)

• Teletext subtitling using a teletext capturing cart (6.6M words)

• Auto-cues form the NOS (1.2M words)

The collection is reasonably large andmay be regarded as an approximation
of the collections used in international speech recognition research related
to spoken document retrieval in the broadcast news domain. It must be
noted however that the collection is limited in two ways. Firstly, it provides
training data for the news domain in particular and secondly, the collec-
tion largely contains written text data. It has to be acknowledged that as
a consequence the data collection is not optimal for modelling the spoken
language in the broadcast news domain.

In the next chapter, the normalisation of the raw text data to a format
suitable for language model training will be discussed.



Chapter 8

Text Normalisation

Language model training corpora are usually collected in the original format
and may therefore contain different character encodings, punctuation marks
and a variety of special characters. Moreover, words appear in a many or-
thographic forms and are sometimes spelled incorrectly. Therefore, these
corpora need to be normalised first in order be useful for language model
training. This chapter describes the normalisation steps that were under-
taken to make the collected Dutch corpora suitable for training.

8.1 Introduction

In the previous chapter the Dutch text corpus for the training of Dutch
language models was described. This corpus cannot directly be used for
language model training. Due to specific operating systems and/or encod-
ing formats used by the different content providers, the data contain vari-
ous character representations originating from different encoding schemes,
such as Latin1 (ISO-8859-1), HTML and Unicode. The texts are packed with
all kinds of punctuation marks, numbers, abbreviations and special charac-
ters (such as the %-sign). Furthermore, words appear in a variety of ortho-
graphic forms: with or without initial capitals, completely in capitals, with
capitals in the middle, with incorrect or missing diacritics and with a wide
range of other types of spelling errors. These kinds of text data, referred
to as raw text data, first have to be “cleaned” or normalised in order to be
useful for language model training.

Normalisation is usually not regarded as a very challenging research
topic but merely a job that has to be done to enable further research. With
the huge amounts of text data used in language modelling, it is even doubt-
ful if an accurate normalisation procedure would significantly improve lan-
guage model or speech recognition performance compared to more drastic
approaches, as the one that just removes all punctuation marks and spe-
cial characters regardless of the context, ignores orthographic variation and
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converts all words to lowercase words without diacritics. In spite of this, it
seemed worthwhile to discuss normalisation for Dutch language modelling
in detail in this thesis, firstly, to give a global impression of the normal-
isation difficulties encountered in Dutch text data. A second motive stems
from the lack of detailed descriptions of normalisation procedures in the
literature and the absence1 of (Dutch) software that can readily be used for
the normalisation task, which is surprising given its value for a variety of
applications in language and speech technology. By providing and docu-
menting a possible approach to the normalisation problem for Dutch and
by implementing the normalisation procedures described below in a pub-
licly available normalisation module, this gap could be bridged. In the next
section, the goals of the normalisation procedure in the context of language
model training are defined, followed by a description of the subsequent
components. Finally the effect of the procedure on the data characteristics
is described.

8.2 Normalisation for LM training

Normalisation in the context of language model training is concerned with
the reduction of lexical variability, or the number of word forms in the
word list derived from the corpus, further referred to as lexical items or
lexemes. Lexical variability is firstly determined by language. For some lan-
guages, the intrinsic lexical variability is larger than for others. Finnish for
example, has a large variety of inflected forms for most of the words (e.g.,
Siivola et al., 2001) resulting in a huge morphological variability. Word com-
pounding is another language feature that influences lexical variability for
languages such as German and Dutch (see also Chapter 9). This type of
lexical variability can be addressed by means of stemming or by splitting
compound words. However, lexical variability in the context of text normal-
isation does not refer to this intrinsic, language specific, lexical variability.
Instead, variability is addressed that is caused by orthographic variation
due to the original function of the text or caused by the actual creation
of it, such as the occurrence of punctuation marks, lay-out and formatting
markers, and human flaws in a broad sense.

In general, the choice for specific normalisation steps depends on the
intended use of the corpus. If it is to be used for part-of-speech tagging,
it can be useful to keep the punctuation marks in the data to facilitate the
tagging process. Statistical language modelling however is purely based on
counts of words (or n-tuples of words) in the training data. Therefore punc-
tuation marks are usually removed as they severely contaminate the counts

1Absent in this context means untraceable. From an information retrieval point of view,
something that is untraceable, is in fact non-existent provided that the (un)trace-ability is
determined on the basis of thorough search efforts. As thoroughness is highly subjective,
it must be noted that the literature available to the author and both Internet and human
sources were consulted to provide information about existing documentation and software.
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’Bovendien: 10 ’Bovendien, 27
”Bovendien,” 11 bovendien. 286
’Bovendien’, 11 Bovendien ← 29172
,,Bovendien: 14 ’Bovendien 335
Bovendien, ← 1433 ,,Bovendien, 34
”Bovendien 181 bovendien, 383
“Bovendien 19 ,,Bovendien”, 39
bovendien ← 20089 ,,Bovendien ← 719
bovendien: 252 Bovendien: ← 731

Table 8.1: Example of the different versions of the Dutch
word “bovendien” with word frequency information, as they
appear in a raw text database of 170M words

of single word forms, as illustrated in Table 8.2. Here, 61 orthographically
different versions of the Dutch word “bovendien (English: moreover)” oc-
curring in a raw text database of 170M with a minimum frequency of 10
are listed. The ultimate goal of normalisation for language modelling is to
obtain “clean” text versions, containing a representative set of semantically
or morphologically distinct words. With a clean text corpus word counts
can be used reliably to estimate which words are the N most important
words in the corpus domain. This information is used to construct language
model vocabularies that are expected to have an optimal lexical coverage in
a comparable domain. To illustrate the effect on lexical coverage of using
raw data, suppose that a 20K vocabulary was constructed using the top 20K
words of the text data, used to create the list in Table 8.2. The word with the
lowest word frequency included in this vocabulary, would still have a word
frequency of roughly 500. As a consequence, one would end up with five
versions (denoted with a ← in the Table) of “bovendien” in the vocabulary.
Evidently, there is no sense in incorporating these variations. The wasted
vocabulary space could better be occupied by (four) other words, result-
ing in an improved lexical coverage. A comparably disturbing effect of raw
data is observed in n-gram training. Not only are the unigram counts unre-
liable using the text data in the above example, but the bigram and trigram
counts, that already suffer the most from data sparseness, are scattered
across many lexical items.

As normalisation tools for Dutch were not available at the outset of this
research, a set of normalisation scripts were created, primarily tailored for
the intended use of the normalised texts: language modelling for speech
recognition. In one of the few publications in which normalisation is dis-
cussed in detail, Adda-Decker and Lamel (2000) distinguish several norm-
alisation steps that may be deployed, depending on the characteristics of
the language being studied. Also, the effect on lexical coverage of differ-
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ent normalisation steps given a French text corpus are described. Of the
steps mentioned, especially the processing of punctuation marks, the pro-
cessing of capitalised sentence starts and digit processing appeared to be
very effective in terms of lexical coverage improvement. For the Dutch text
database, comparable normalisation steps were applied. The normalisation
effects were measured in terms of differences in total words and distinct
words, and in lexical coverage improvement as in the French study. Apart
from providing these measures, it is almost impossible to provide perform-
ance evaluation statistics on the normalisation procedure as a whole, for
example in terms of precision and recall. Checking parts of the produced
text versions manually is not feasible as the number of errors in a text part
of manageable size is too marginal to provide useful statistics about error
types. The only way to obtain more information about the performance of
a normalisation step is to look into word items with very small frequencies
in the word frequency file. When word items have a very low frequency,
it is often an indication that there is something wrong with the word or a
normalisation step. However, this method was extensively used for debug-
ging and optimisation purposes and therefore not useful for the retrieval
of performance statistics.

8.3 Normalisation procedures

In the following, punctuation marks (such as !), unit markers (such as %),
numbers and other characters not in the alphabet-range (such as #), will be
referred to as special characters. Processing these special characters is un-
doubtedly the most effective step in the normalisation procedure but also
the most difficult one. Special characters are the main cause of the large lex-
ical variability in raw text data (as illustrated by the example of “bovendien”
in Table 8.2), but their function is not seldom ambiguous. Take for example
the words “-’s morgens- (English: in the morning)” and “-bovendien’-” where
the quotation mark character has a different function for each word. This
ambiguity necessitates a close look at the context of the characters.

Before the normalisation procedure is described in detail, some aspects
of normalisation in the context of language modelling for speech recog-
nition that were hitherto passed over without comment, need to be ad-
dressed. Firstly, providing for a consistent speech recognition output, for
instance by keeping to Dutch spelling rules, runs parallel with the normal-
isation process. This sometimes conflicts with the lexical variability reduc-
tion goal. For example, variability can be reduced by converting all words
to lowercase (or uppercase as in some North-American/English systems) or
by even removing diacritics as well2. But when the output of the speech
recognition system is used within an information retrieval framework, as

2Note that in Dutch case distinction and, with only a few exceptions, diacritics are not
significant for the meaning of words.



8.3. NORMALISATION PROCEDURES 111

is the case in this research, keeping the original case for named entities
(such as cities, companies, persons) can be helpful in later (information
retrieval related) processing steps (e.g., Kubala et al., 1998). Another ex-
ample is the processing of hyphens. Removing the hyphen in words such
as “Groot-Britannië (English: Great Britain)” will decrease lexical variability,
but produces speech recognition output that departs from Dutch spelling
rules.

Furthermore, normalisation in a speech recognition context requires
that special characters are converted to “spoken” forms whereas others
can be deleted. An unambiguous conversion example is the “%”-sign that
is converted to “procent” in order to obtain a “spoken” variant. For some
special characters the decision to convert or to delete is not evident and
depends on either the desired speech recognition output or its intended
function in the language model training itself. An example of the latter is
the conversion of the period as end-of-sentence mark to “〈s〉”, to act as a
context-cue in n-gram estimation (see Chapter 6).

It must also be mentioned that given the large amount of typographic
oddities (formatting errors, spelling errors) in newspaper data, it is ex-
tremely hard, if not impossible to process every single special character
satisfactorily. With a consistently growing data collection, every now and
then an ambiguous “special-character-case” pops up that was not yet ac-
counted for and that calls for a decision to be made: ignore it, as its fre-
quency of occurrence is small, or normalise it, which means going through
the normalisation algorithms again in an attempt to resolve this without
disturbing anything else.

A final remark concerns the order in which special characters are pro-
cessed. This is important as the normalisation steps are implemented in a
modular fashion. Take for example the lexical item “bijv.”. It is evident that
one should solve the abbreviation (expand “bijv.” to “bijvoorbeeld (English:
for example)”) before the period is processed in a separate normalisation
step.

Recapitulating, the processing of special characters is difficult and solv-
ing every single case satisfactorily is almost impossible. In general, for
every special character one must determine:

1. what is the intended goal of processing them:

• decreasing lexical variability

• avoiding violation of Dutch spelling rules (speech recognition
output)

• create “spoken” variants (language modelling, speech recognition
output)

• creating context-cues for language modelling

2. whether the character is ambiguous or not
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Below, all normalisation steps are described in the order in which they were
applied. Two normalisation levels are distinguished: a standard level and a
“variant reduction” level. The standard level (denoted below as “N” with a
number for every subsequent normalisation step) refers to normalisation
procedures that have an effect on the total amount of words. The proced-
ures in the variant reduction level (denoted below as “VR” with a number)
do not change the total amount of words but try instead to reduce the
number of distinct words by mapping different word variants to one single
form.

Encoding issues (N0)

As the text data came from different sources (PCM Publishers , teletext cap-
turing card, broadcast company, Internet), there was no uniform encoding
scheme. The collection contained HTML and Unicode entities and also dif-
ferent character sets were detected. Therefore, the first normalisation step
that was taken, was coding the data to an encoding scheme that is ad-
equate for the Dutch language: ISO-8859-1 (Latin1). The resulting decoded
text served as starting point for the next normalisation steps.

Brackets and very short sentences (N1)

Single brackets are non-lexical items that should be removed from text
data used for language model training. However, as there is usually text
in between the brackets, they cannot simply be deleted as by doing so, un-
grammatical sentences are created. Therefore, bracket-pairs were searched
for, in order to remove both the brackets and their content. When, after en-
countering an opening-bracket, a closing-bracket could not be found within
the scope of a paragraph (paragraphs end in a newline character) or before
encountering another opening-bracket, only the first encountered opening-
bracket was removed.

In newspaper data, very short quasi-sentences are encountered: a date
and a place at the start of articles, lines with the name of the author of the
article, the photographer of a photo and short titles. As these sentences
are not very useful for language modelling and frequently ungrammatical
(especially titles), sentences containing four or less words were filtered out.

Abbreviations (N2)

Abbreviations are not encountered in spoken language. Instead, the abbre-
viated words are (normally) fully pronounced. Abbreviations should there-
fore be translated to their spoken counterparts in order to be able to model
their occurrence in speech. For this purpose, a translation table of 750
Dutch abbreviations was created using a Dutch dictionary so that an abbre-
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viation such as “z.g.a.n” could be expanded to “zo goed als nieuw (English:
as good as new)”.

Quotes (N3)

Quotation marks appear in many forms in the text data and are an import-
ant cause of lexical variability. Double quotes are relatively easy to process
but the single quote is an example of an ambiguous special character. It
should be removed when used as a quotation, but in order to provide for a
consistent speech recognition output, should be preserved in the following
examples:

(1) in plurals when the singular form ends with a vowel, as in “foto’s
(English: photos)”

(2) in prefixes, as in “’s morgens (English: In the morning)” or “’45”

(3) in foreign words, as in “l’ancien”

(4) in personifications of acronyms, as in “NS’er(s) (English: person who
works for the Dutch railway company)”

(5) in names, as in “O’Connely”

(6) in possessive forms, as in “Anne’s boek (English: Ann’s book)”

(7) in abbreviations, as in “m’n (English: my)” or “A’dam3

(8) in diminutives, as in “ABC’tje” (English: small ABC)

Note that in example (4), the single quote was indirectly preserved. Given
the relatively high frequency of these cases, the suffix “’er(s)” was converted
for optimal variability reduction, depending on the character that preceded
the single quote:

(A) to “ er(s)” after “E,A,N,M,F,S,Z,K,R,Y,H,J,L,X ”4 (NS’er → NS er),

(B) to “ wer(s)” after or “O,U,Q” (TNO’ers → TNO wers),

(C) to “ jer(s)” in all other cases (DTP’er → DTP jer).

Three conversions were needed to provide for correct pronunciations of the
suffix being “promoted” to a stand-alone word. After a speech recognition
run, the original suffixes can be regained in a post-processing step.

3Amsterdam is sometimes abbreviated as A’dam
4characters may have diacritics
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Commas (N4)

The comma appears between words or between numbers and sometimes a
pair of these is used as a substitute for a double quote. In the latter case
the commas were deleted. When appearing between numbers they were left
alone to be processed later during the processing of numbers (see below). In
all other cases the commas were converted to “〈comma〉” so that they could
serve as context-cues for language modelling. As commas usually indicate
a possible phrase-boundary, the position of the commas can possibly be
used to add filler words or breath-noises at (some of) these positions to
make the text data resemble spontaneous speech (Gauvain et al., 1997).

Various conversions and deletions (N5)

The normalisation carried out in this step all focussed on unambiguous
special characters. It concerns question marks, exclamation marks and non-
word characters such as “#” that have no special meaning for language
modeling and could all be deleted, except a few special characters that were
converted to “spoken” variants such as “%” to “procent (English: percent)”
and “◦” to “graden (English: degrees)”. For the same reasons mentioned
in step N4, the colon and semi-colons were converted to the context-cues
“〈colon〉” and “〈semi-col〉”.

Hyphens (N6)

According to Dutch spelling rules, hyphens are required in a number of
cases, for example in geographic names (“Groot-Britannië”), at word bound-
aries when vowels ambiguously clash as in “zee-egel (English: sea urchin)”
and in various other compounds (page 45–47 Woordenlijst Nederlandse
Taal, 1995). In Dutch the hyphen can be used to replace parts of compounds
when this compound part reappears later in the sentence in another com-
pound. For example, the Dutch phrase “in voorspoed en tegenspoed” can
be written as “in voor- en tegenspoed (English: in good and bad times)”.
As hyphens in words increase lexical variability, all hyphens were removed
and compound words were split by converting all hyphens to a space, ex-
cept when the first constituent was a single character, as in “e-commerce”.
The latter was done because mono-phone words are hard to recognise cor-
rectly. By normalising hyphens this way, Dutch spelling rules were regarded
as subordinate to the expected substantial decrease in lexical variability.

Periods (N7)

The most frequently appearing ambiguous special character is the period.
It can mark the end of a sentence, appears in abbreviations and initials,
in WWW related words, in numbers and in constructions such as “en toen
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. . . niets meer (English: and then . . . nothing)”. In most cases, the period is
an important cause of lexical variability. However, as its function cannot
always clearly determined by a shallow look at the word and its surround-
ings, the normalisation of words with periods is difficult. The period that
serves as end-of-sentence was detected by looking at the following word
that should be more then one character long (otherwise the period could
belong to an initial, if the word containing the period has only one upper-
case character, see [2] in Table 8.3) and have at least an uppercase first
character (see [1] in the Table). In most cases, this algorithm is sufficient
for detecting sentence boundaries, although some exceptions had to be im-
plemented, for example when a space was missing after the period (the
period appears in the middle of words). In such a case, it was necessary to
verify whether the word could be a URL or email address (see [5]). Multiple
periods also necessitate special treatment (see [6] and [7]). Periods in ab-
breviations were processed first, those in numbers were processed in later
processing steps.

'

&

$

%

function before normalisation after normalisation
end-of-sentence . . . einde. Begin . . . einde 〈s〉 Begin
abbreviation bijv. bijvoorbeeld
initials J. F. Kennedy J〈init〉 F〈init〉 Kennedy
numbers 1.000.000 1.000.000
www www.bla.com www punt bla punt com
not eos en . . . toen ging hij weg en toen ging hij weg
eos weg . . . Toen ging weg 〈s〉 Toen ging

Table 8.2: Normalisation applied to the period

Numbers (N8)

Numbers were expanded to their “spoken” counterparts in order to reduce
lexical variability. For example, “1,000” was converted to “duizend” and
“100,000,000” to “honderd miljoen”. Two things need to be noted. Firstly,
numbers were written out in a “split” form for optimal variability reduction.
So “21” was converted to “één en twintig”. To be able to glue the numbers
together again in a post-processing step the underscore was introduced in
“en 5”. Secondly, the dots and commas in numbers were also converted to
their counterparts in speech: “12,50” became “12 komma 50”. If a number
with a comma or dot was preceded by a currency symbol, the dots and
commas were replaced by written variants of currency units, so “fl.12,50”
became “12 gulden 50”.

5The word “en ” is pronounced differently as the regular word “en”: /@ n/ instead of /E
n/. Note that “1” is converted to “één”.
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Case normalisation (VR9)

To reduce lexical variability caused by the large amount of case-variants
in the text data, all case variants of words were converted to a standard
case-variant using word frequency information. It was assumed that the
most frequent variant in the text data was the standard spelling form. Al-
though this assumption may not be valid for all cases, it provides a valuable
criterion to reduce the number of word variants in the collection. The pro-
cedure was as follows:

1. From all available newspaper text data normalised up to this point,
a word frequency file was generated. To avoid words at start of sen-
tences (that are always written with a capital) contaminating the fre-
quencies, all words at the start of sentences were discarded.

2. Frequencies of all variants of a word in the word frequency file were
compared. The most frequent variant was stored in a conversion table
with a “key” form in lowercase as search key and the most frequent
variant as standard form. For example, of the word “groenlinks6” the
following variants were found in the data:

• a version completely in lowercase: “groenlinks”

• a version completely in uppercase: “GROENLINKS”

• a capitalised version: “Groenlinks”

• a version with special capitalisation: “GroenLinks”

As the “GroenLinks” variant had the highest frequency, the key “groen-
links” with the most probable correct form “GroenLinks” was added
to the conversion table (see Table 8.3).

3. When variants had an equal frequency of occurrence, no decision cri-
terion actually existed for selection. In such cases one variant was
(randomly) chosen in order to achieve an optimal lexical variability
reduction.

4. During the normalisation process, words were first converted to the
key form and looked up in the conversion table. If a conversion entry
existed it was rewritten, otherwise the lowercase base-form was re-
garded as the standard form.

To ensure that the collected word frequencies are reliable indicators for
the preferred spelling of words, it is crucial to use training text data that is
expected to have the least amount of inaccuracies. As auto-cue transcripts,
text data from the Internet and especially teletext subtitling were expec-
ted to suffer the most from spelling inaccuracies, only newspaper text data
were selected for this procedure. The case-conversion table that was cre-
ated eventually using 370M words of newspaper text data contained 280K
entries.

6GroenLinks is a Dutch political party
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key correct key correct
cao CAO zeeland Zeeland
theo Theo poolse Poolse
chirac Chirac dow Dow
n N upc UPC
marokko Marokko brabant Brabant
mun̈chen München jorritsma Jorritsma
ruud Ruud poetin Poetin
denemarken Denemarken imf IMF
canadese Canadese arena Arena
albanese Albanese delft Delft

Table 8.3: Excerpt of case-correction table

Diacritics related spelling correction (VR10)

Diacritics related errors were frequently found in the training data. The
word “café” for example was found (in a subset of 40M words of the com-
plete training material, see section) 2051 times written correctly, but also
45 times written incorrectly without the acute accent. To reduce the variab-
ility for words with accents, again word frequency information and a con-
version table was used to solve erroneous spelling variants. The procedure
resembles the procedure for solving case variants:

1. From all available newspaper text data, normalised up to this point, a
word frequency file was generated.

2. A key form of a word was created by converting characters with dia-
critics to their ASCII counterparts in lowercase. The variants “café”,
“cafë” and “cäfé” were converted to “cafe”.

3. Frequencies of all variants of a word in the word frequency file were
compared. The most frequent variant was stored in a conversion table
with a key form as search key and the most frequent variant as stand-
ard form.

4. When variants had an equal frequency of occurrence, one variant was
(randomly) chosen in order to achieve an optimal lexical variability
reduction.

5. During the normalisation process, words were first converted to the
key form and looked up in the conversion table. If a conversion entry
existed it was rewritten, otherwise the key form in ASCII was regarded
as the standard form.
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The diacritics-conversion table that was created using all newspaper data
contained 18K entries. An excerpt is shown in Table 8.4.

'

&

$

%

key correct
geneve Genève
geinformeerd gëınformeerd
beeindigen beëindigen
ethiopie Ethiopië
enquetecommissie enquêtecommissie
beinvloed bëınvloed
jordanie Jordanië
israeliers Israëliërs
fpo FPÖ
coordinator coördinator
cafes cafés
venetie Venetië
australier Australiër
maleisie Maleisië

Table 8.4: Excerpt of accent-correction table

Various spelling errors (VR11)

Evidently, a lot of spelling errors that are not related to diacritics or case
are encountered in the text data as well. Most of these errors cannot easily
be corrected as they are often ambiguous. Solving them would require a re-
fined morphological and/or syntactical analysis. A first attempt to correct
these spelling errors was done using a spelling correction table provided by
the Dutch dictionary publisher Van Dale7. The correction table was created
on the basis of a list of over a million distinct words encountered in the
newspaper texts. The list was processed by the spelling corrections pro-
cedures at Van Dale, resulting in a table with the original words in the first
column and a varying number of possible correction alternatives in the next
column(s). The alternatives were ranked by the amount of effort needed (in-
sertions, deletions, etc) to get to the correct form, the alternatives with the
least amount of effort coming first. This correction table could however
not be successfully deployed for automatic spelling checking. Correction
alternatives are applicable in human controlled applications, as is usually
the case with word processors. However, human interference is evidently
not feasible for the correction of large text databases. Attempts to make

7see also Appendix C
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choices out of the word candidates automatically by selecting the “least ef-
fort” candidates or by using frequency information, failed. Although many
errors could be corrected successfully, it could not be avoided that a rel-
atively large number of errors were incorrectly altered as well. Therefore,
this method had to be abandoned.

Some types of spelling errors can be corrected with relatively straight-
forward procedures. Such errors include characters appearing more than
twice in a row (such as in “onmiddelllijk English: immediately”). When such
character sequences were found, the sequence was truncated so that a se-
quence of two characters remained. The resulting word candidate (“onmid-
dellijk”) was looked up in a word frequency table. If the candidate existed,
the word was replaced. Another type of error was seen in compounds of
which the final “n” in the first constituent was forgotten or incorrectly in-
cluded, such as in “panne(n)koek (English: pancake)” and “spinne(n)wiel
(English: spinning wheel)”. These errors are relatively frequent due to the
combination of relatively complicated spelling rules and a recent change of
these rules. To solve most of these errors, word frequency information was
deployed. When one variant was encountered, its counterpart was created
automatically. Both variants were looked up in the word frequency table.
The variant with the lowest word frequency was substituted.

A third type of error is the incorrect use of quotes in plural or possess-
ive word forms. In Dutch a quote is in certain cases inserted before the “s”
when just appending the “s” could result in a confusion about the word’s
pronunciation. This is the case with words ending with a vowel, such as
in “Anne’s fiets (English: Ann’s bicycle)” or “tien foto’s (English: ten pho-
tographs)”. However, when the word ends with a vowel but the pronunci-
ation does not become ambiguous, the quote is not included, as in “Gores
campagne (English: Gore’s campaign)” or “tien politiebureaus (English: ten
police stations)”. Words with an incorrectly inserted quote could easily be
corrected when the character before the quote was a consonant: in that
case the quote was removed. When the preceding character was a vowel
however, word frequency information was again used. Assuming that in
newspaper data the correct spelling form is most frequent, the variant with
the lowest frequency in the newspaper text collection was replaced by the
one with the highest word frequency.

Finally, a list of words that were undoubtedly correctly spelled (as these
came from the Van Dale dictionary) was used to solve errors. The inter-
change of “c” for “k” or vice versa is a frequently encountered error in
Dutch text data. The word “rekruteren (English: recruit)” for example is of-
ten written as “recruteren”. Given both variants, the one that was not found
in the correct word list was replaced with the one found.
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Acronym processing (N12)

In 360M words of newspaper data more then 8500 acronyms were ob-
served. About 1000 of them appear in the top 65K most frequent words.
In Adda-Decker and Lamel (2000) acronyms are split up into separate char-
acters (“ABCD” becomes “A. B. C. D.”) to reduce lexical variability. A dis-
advantage of this acronym splitting procedure is that all separate char-
acters must be recognised correctly in order to retain the acronym in a
speech recognition task. Given the small amount of acoustic information
in single characters, recognising these correctly is very difficult. On the
other hand, although single-character recognition errors are circumvented
when acronyms are not split up, recognition errors will be introduced for
acronyms that are not included in the recognition vocabulary. A comprom-
ise was found in leaving the 1000 most frequent acronyms untouched and
splitting up all other acronyms that were encountered. This way, lexical
variability can be reduced whilst the most frequent acronyms will not suf-
fer from incorrect character recognition, and less frequent acronyms still
have a chance of being recognised as a sequence of single characters.

8.4 Normalisation results

The effect of the normalisation procedures was evaluated by looking at
lexical variability reduction. In Table 8.4 the changes in total number of
words, number of distinct words, and the self-coverage of 65K lexicons de-
rived from the normalised text versions are shown. Also, the ratio of the
total number of words and the number of distinct words are given, as the
ratio metric is indicative of how well the n-gram probabilities can be es-
timated. The ’N6’ procedure shows the results for the alternative VR9 and
VR10 normalisation procedure: converting all words to uppercase words
without diacritics. The absolute differences in unique words relative to the
previous step are given in the “Diff” column. The labels in the left column
correspond with the labels on the x-axis in Figure 8.1 on page 121 that plot
the statistics of Table 8.4.

8.5 Discussion and conclusion

The normalisation procedures show a 10.5% increase in the total number
of words and more importantly, a 64% decrease in distinct words. Lexical
coverage consistently increases, reaching a 16.33% relative gain. So, lexical
variability has been reduced substantially. Especially steps N3, N4, N6 and
N7 have contributed a great deal to this reduction. As the ratio metric also
increased, from 29 to 93, the robustness of the n-gram models that are
trained using the normalised corpus, is expected to improve.
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Figure 8.1: Effect of normalisation steps on total number of words
(upper-left), number of distinct words (upper-right) and lexical coverage
(bottom)
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Total words Unique words Diff Lex cov Ratio
N0 39,780,228 1,352,167 90.98 29
N1 39,085,707 1,244,624 13,971 91.53 31
N2 39,085,730 1,244,383 –241 91.53 31
N3 39,088,288 1,075,832 –168,551 92.35 36
N4 40,634,465 933,539 –142,293 93.83 43
N5 40,836,087 857,188 –76,351 94.27 47
N6 41,093,448 741,116 –116,072 94.74 55
N7 43,488,975 594,353 –146,763 96.09 73
N8 44,437,768 569,158 –25,195 96.40 78
N6 44,437,768 487,906 –81,252 97.25 91
VR9 44,437,768 493,453 –75,705 97.05 90
VR10 44,437,768 488,162 –5,291 97.09 91
VR11 44,437,768 486,634 –1,528 97.10 91
N12 44,869,776 482,197 97.20 93

Table 8.5: Effects of the normalisation procedures on the number
of words, distinct words, their ratio and the (self) lexical coverage
of a 65K lexicon. The names in the left column correspond with the
names on the x-axis in Figures 8.1 on page 121. The N6 procedure
shows the results for the normalisation procedure that converts all
words to uppercase words without diacritics.

A few remarks need to be made. Firstly, the expansion of abbreviations
hardly had an effect on lexical variability. It reduced the number of distinct
words by only 241 words. Most of the abbreviations were apparently ex-
panded to single words (such as “bijv.” to “bijvoorbeeld”) given the small
increase in the total number of words due to the abbreviation expansion
step. Secondly, it must be noted that the huge increase in total number
of words after the processing of the comma and the dot was caused by the
conversion of commas and dots to the context-cues “〈comma〉” and “〈s〉” re-
spectively. However, as commas and dots were often attached to words, de-
taching them reduced the number of distinct words dramatically. Thirdly,
of the variant reduction (VR) normalisation steps, especially the case nor-
malisation step substantially reduced lexical variability. The effect of the
error correction normalisation steps (VR10 and VR11) was evidently much
smaller (errors are less frequent than case differences) but as the distinct
words were reduced with 7000 words, it means that a satisfying amount of
at least 7000 misspelled words could be corrected. Finally, note that when
the case normalisation and diacritics normalisation steps are replaced by
a single procedure that just removes all case and diacritic related distinc-
tions by converting all words to upper-cases without diacritics, the lexical
variability reduction is not exactly the same. This is due to the few words
that have a variant with and without diacritics, such as for example “één
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(English: one)” and “een (English: a)”.
In principle, all topics related to language modelling that are addressed

in the following chapters, use text versions that are normalised as de-
scribed above. However, it must again be pointed out that the normalisation
process cannot be regarded as a non-recurring procedure. Instead, due to
a growing data collection or a shift of focus on the data, new cases pop
up that necessitate normalisation. Illustrative is the spelling of the word
“Qaida”. In older newspaper material it was usually spelled as “Kaida”. But
this became only apparent during the evaluation of speech recognition runs
on recent material, showing that “Qaida” in the reference transcript was
sometimes substituted by “Kaida”. The speech recognition vocabulary un-
necessarily contained both versions due to their frequent occurrence in the
training data: “Kaida” in older material and “Qaida” in more recent mater-
ial. When cases like these showed up, the normalisation procedures were
adapted wherever possible. Isolated cases that could not be fit into existing
normalisation steps were listed in an exception table and their occurrences
in the data were normalised individually.
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Chapter 9

Vocabulary optimisation

An appropriate word selection for the language model vocabulary is cru-
cial for an optimal coverage of the words appearing in the task domain.
In this chapter, the selection of words for the language model vocabulary
is addressed. A novel word selection method is introduced that incorpor-
ates long-term temporal information in the word selection procedure. This
method and other vocabulary selection methods are compared in terms of
out-of-vocabulary rate in a simulated longitudinal broadcast news transcrip-
tion task.

9.1 Introduction

Constructing a vocabulary is a crucial preparatory step in statistical lan-
guage modelling (LM) for large vocabulary speech recognition (LVCSR). Its
quality contributes a great deal to the quality of the model and ultimately,
ASR performance. The better the vocabulary covers the words in a task
domain, the less the speech recognition will suffer from out-of-vocabulary
(OOV) words that are an important source of error in speech recognition
systems. In speech recognition the coverage of a vocabulary is usually ex-
pressed in terms of lexical coverage, the ratio between the number of words
in the task domain that are in the vocabulary and the total number of words
in the task domain. The OOV rate is its counterpart and is defined as the
ratio between the number of words that are not covered by the vocabu-
lary and the total number of words in the task domain. As a speech recog-
niser substitutes OOV words for the most probable alternatives given the
acoustic model and language model, the N-gram language model probabil-
ity of the next word is computed on the basis of an incorrect word. In other
words, the language model probability of the word following the OOV word
is based upon a “corrupted” history. Therefore, an OOV word may not only
result in one word not being recognised correctly but instead, could dam-
age the recognition of the next word(s) as well. Several studies (Gauvain
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et al., 1995, e.g.,) showed that one OOV word can result in between 1.2 and
2.2 word recognition errors.

From an information retrieval (IR) point of view, the vocabulary of the
speech recognition system can be viewed at as the set of words that will
be used to create representations of the documents in the task domain.
For a successful retrieval of the individual documents the vocabulary must
cover the words in these documents well. OOV words may result in OOV
query words (QOV): words that appear in a user’s query and also occurred
in the audio document but, as they were OOV, could not be recognised
correctly. OOV’s damage retrieval performance in two ways: firstly, given a
query with a QOV word, the QOV word leads to a word miss in searching.
Secondly, its replacement potentially induces a false alarm for other quer-
ies. Document expansion and query expansion techniques (see Chapter 2.2
on page 32) are often deployed to compensate for QOV’s in information re-
trieval (Woodland et al., 2000, e.g., see). Nonetheless, reducing OOV words
in a speech recognition task is worthwhile. All the more as the mentioned
expansion techniques keep their added value with respect to retrieval per-
formance, even when a speech recognition system produces only a small
number of errors.

In the next sections, a number of vocabulary creation strategies are dis-
cussed. These strategies are particularly evaluated on their ability to select
an appropriate vocabulary for the broadcast news domain. First, a standard
vocabulary selection procedures is described. Next, vocabulary selection
methods that use temporal information to reduce OOV words in the broad-
cast news domain are discussed (Section 9.3), followed by the description
of a novel approach to incorporate temporal information in the vocabulary
selection procedure (Section 9.4). Finally, in Section 9.5, all described vocab-
ulary selection methods that focus on temporal information are compared
in terms of OOV rates in a simulated longitudinal broadcast news speech
recognition task.

9.2 Standard vocabulary selection

The difficulty with vocabularies in speech recognition is that their size is
usually limited. Evidently, the number (N) of selected vocabulary words in-
fluences the representation quality of a vocabulary. The larger N is chosen,
the better the representation will be. This is illustrated in Figure 9.1 that
plots the coverage of vocabularies as a function of vocabulary size given
a newspaper corpus of 300M words. This corpus was both used for gen-
erating the vocabularies by selecting the top N most frequent words, and
for measuring lexical coverage. In the context of broadcast news transcrip-
tion however, one must recognise that as new words (especially names) are
introduced frequently, OOV words cannot entirely be banned, regardless
of the vocabulary size. Moreover, when a vocabulary of a speech recogni-
tion system grows, acoustic confusability becomes more probable as the
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number of words that differ only in a few phones grows with it. Because of
this acoustic confusability the optimal vocabulary size for large vocabulary
tasks is estimated to be roughly between 55K and 110K words Rosenfeld
(1995). Another reason for restricting vocabulary size is that speech re-
cognition systems are often bound to a vocabulary size limit of 655361

words due to implementation decisions, as is the ABBOT speech recogni-
tion system that was used for this research. As most of the research effort
in speech recognition used to be concentrated on English, this size limit
was not much of a problem: a 65K vocabulary often provided near full
coverage in English (see Table 9.2 below).

'

&

$

%

EN IT FR NL GE
#words 37,2M 25,7M 37,7M 37M 36M
#distinct 165K 200K 280K 462K 650K
ratio 225 128 135 80 55
5K coverage 90.6% 88.3% 85.2% 84.02% 82.9%
20K coverage 97.5% 96.3% 94.7% 92.64% 90.0%
65K coverage 99.6% 99.0% 98.3% 97.15% 95.1%

Table 9.1: Comparison of languages in terms of number of distinct
words, ratio and lexical coverage for different vocabulary sizes. The
data was borrowed from Adda-Decker and Lamel (2000), except for
the Dutch data.

Seymore et al. (1997) estimated a vocabulary in the range of 40K - 60K
to be appropriate for the English Hub4 broadcast news task. That the op-
timal vocabulary size in this domain may be higher for other languages was
illustrated by the study of Adda-Decker and Lamel (2000). In this study lan-
guages are compared in terms of lexical variety, lexical coverage and the
ratio:

#words in the data
#distinct words in the data

that provides an indication of how well statistical language models can
be estimated given a certain language. In Table 9.2 the statistics found
in Adda-Decker and Lamel are given and those for Dutch (NL) are added. It
shows that Dutch is comparable with German (GE): both languages have a
low ratio statistic compared to the other languages which means that the
training of robust LM parameters is relatively difficult. Lexical coverages
are significantly lower: those of German lexicons being even lower than
those of Dutch. The reason for the latter is case declension for articles,
adjectives and nouns, which dramatically increases the number of distinct
words in German. The major reason for the poor ratio and lexical coverage

1Using 16-bits integers allows for the representation of 216 = 65536 words
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Figure 9.1: Lexical coverage as a function of vocabulary size.
Vocabularies were obtained using the top N words in a 300M
newspaper corpus. Lexical coverages were measured using the
same corpus.
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of German and Dutch compared to the other languages is word compound-
ing: words can (almost) freely be joined together to form new words (for
example, the valve cap of a bicycle tire is translated as “fietsventieldopje”
in Dutch). Because of compounding in German and in Dutch, a larger lex-
icon is needed to achieve the same lexical coverage as for Italian, English or
French. As vocabulary size in large vocabulary speech recognition is usually
limited to 65K words–so practically invariable–vocabulary space for these
languages may be regarded as particularly sparse. For languages such as
Dutch or German it is even more important to select only those words that
are expected to appear in the task domain in order to use the sparse vocab-
ulary space economically. Another, or complementary option to reduce the
number of distinct words in Dutch is to split compounds into their parts.
This option will be addressed in Chapter 10.

For creating an optimal vocabulary that is within the limits set by the
large vocabulary speech recognition system, development corpora that are
similar to the task domain are typically deployed to acquire word frequency
statistics that can be interpreted as word unigram probability estimates.
If this data is chosen well, normalised appropriately and large enough to
obtain reliable frequency statistics, ordering the estimates and selecting
the top N words provides a useful word usage representation of the task
domain as the most frequent words are also expected to be the most im-
portant words in the domain. Note however that having selected the most
important words of the domain in the LMs vocabulary does not guarantee
an optimal LM performance. As discussed earlier, the eventual LM perform-
ance highly depends on the amount of available data to train the LM para-
meters for the selected vocabulary. N-gram statistical language modelling
has proven to work very well in speech recognition, provided that there are
sufficient amounts of data to train the word models. Consequently, a very
well-fitting domain representation may still produce a low quality LM when
representative data for robust word model training is only marginally avail-
able. This may occur when for instance a relatively small number of manual
transcripts that have a high resemblance with the task domain are used for
word selection. The quantity of this type of data may be too small for ro-
bust n-gram estimation. Training the LM parameters with large amounts
of available off-domain (e.g., newspaper) data instead, may result in unreli-
able estimates of the n-grams that are not very well represented. This data
sparsity in language modelling can be avoided by using mixtures of lan-
guage models, for example one that closely matches the target domain and
one trained on the full set of development data (Clarkson and Robinson,
1997). In Chapter 11, the application of mixture LMs will be addressed in
more detail.

For certain task domains it may be particularly difficult to obtain an ap-
propriate amount of example data to obtain reliable word frequency stat-
istics for word selection. An illustrative example of such a domain is the
“historical archives” domain in the ECHO project (see Appendix A). To be
able to include historical names and events, or to retrieve (ancient) word
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usage statistics, historical text corpora are needed. Such corpora are how-
ever not available digitally2. In this thesis however, the main focus is on the
broadcast news (BN) domain. Although the amounts of Dutch training data
for this domain are not as large and diverse as for the English language,
the available Dutch newspaper collections provide word frequency statist-
ics that are reasonably close to the BN domain. A number of data selection
techniques have been proposed to make the best use of the newspaper
data in language model training in the BN domain. In the next sections,
these techniques are discussed.

9.3 Vocabulary selection using temporal informa-
tion

As large amounts of text data that perfectly match the target domain are
usually not readily available, data selection often consists of partitioning
the available training data, which is usually newspaper data, a source that
can relatively easily be obtained. Parts of the data that match a task do-
main more closely then others are taken together to serve as input for the
vocabulary selection or LM training routines. The degree of matching the
task domain may for instance be based upon the content of documents
in the collection. When documents in the newspaper collections are labeled
with topic information (e.g. with human annotations or section information
such as “sports” or “business news”, see also section 7), these labels could
serve as selection criteria, or reversely, as criteria to exclude certain con-
tent, such as for example “television broadcast information” that will gen-
erally not contain relevant words for the BN domain. When such labels are
not available and manually partitioning the collection is not an option, the
collection could be partitioned automatically by means of content-based
document clustering and classification, for example by using information
retrieval techniques (see Section 2.2). The use of information retrieval tech-
niques for the creation of domain specific language models is discussed in
more detail in Chapter 11.

Another important information source in newspaper collections that is
often easily available is temporal information. Rosenfeld (1995) showed
that using temporal information as data selection criterion decreases OOV
rates. Lowest OOV rates were obtained using only a relatively small but
recent portion of the available development data. The quality of the data,
expressed here in terms of “recency” appeared to be more important than
the quantity of the data. In real time-longitudinal TDT (Topic Detection
and Tracking, see also Section 2.4) types of tasks, for example the daily
recognition of broadcast news shows, applying recency as a selection cri-

2For the ECHO project attempts were made to scan historical documents for vocabulary
selection and language modelling purposes. These were however not successful due to the
low quality (carbon copies) of the paper prints.
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terion is crucial. The BN domain is subject to a constantly changing focus.
Words that are frequently used (so apparently important) this week, may
not occur at all next week. An illustrative example is the word “poeder-
brief’’ (English: a letter containing, possibly poisonous, powder). This word
was used frequently for a few weeks after 11 September 2001 but after a
relatively short while it was hardly mentioned again. “Recency-sensitivity”
especially applies for named entities: they suddenly appear and after a
longer or shorter while, disappear again. Only a few (presidents, import-
ant cities or companies) are more recency-robust and can be spotted over a
longer period of time. Therefore, in this type of tasks the vocabulary has to
be updated regularly to prevent it from being obsolete. As named entities
are significant keywords in a (spoken document) retrieval framework and
are likely to appear in a query, improving the recognition rate of named
entities implicitly means improving retrieval performance. Figure 9.2 il-
lustrates word history information of a few frequent words. The relative
frequencies of occurrence every week of these words in the Dutch news
database (see Section 7) spanning the period January 1999 until September
2002 are plotted in time. Relative frequencies were taken to normalize for
different amounts of newspaper data per day. The plot in the upper-left
corner shows the changing of importance of Bush and Clinton after the
presidential election. The upper-right one gives an example of words with
a strong periodicity: the word “Kerstmis” (English: Christmas) and “Sinterk-
laas” (English: Santa-Claus). Below, two examples of single words that gain
and loose importance due to news events: the word “Islam” (left) and the
word “poederbrief ” both suddenly going sky-high after the terrorist attacks
on the 11th of September 2001. The use of the word “Islam” however stays
at a consistent level whereas “poederbrief ” sinks into oblivion.

In line with the findings of Rosenfeld (1995), Auzanne et al. (2000) pro-
posed the regular adaptation of the language model vocabulary (and word
models) to minimize OOV words in longitudinal speech recognition tasks.
These so called “rolling language models” (RLM) are created by adding new
words to the vocabulary that were seen within a specific lookback time win-
dow (e.g., one day) in a parallel news-wire text corpus and removing (“for-
getting”) ones that were not seen there within another time limit (e.g., 28
days). Only words that had a minimum frequency of occurrence (4) per day
were added. Applying a rolling language model on the entire TDT-2 cor-
pus (Cieri et al. (1999)) provided a 22.44% relative reduction in OOV words.
Although this procedure seems to work fine given the substantial reduc-
tion in OOV’s, the procedure is limited to the extent that it adds only those
types of words it can “recognize” as new, namely those words that have a
minimum count in the chosen time window. In a first version of the pro-
cedure, Auzanne et al. (2000) chose a time window of one day. Words that
appeared only a limited number of times per day, but appeared with a con-
sistent frequency, could not be picked up by the algorithm. Therefore an
alternative frequency-based method was proposed: words were added also
when they appeared a minimum count of days within a frequency window.
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Figure 9.2: Relative frequency statistics plotted in time of the words
“Clinton” and “Bush” (upper-left), “Christmas” and “Santa-Claus” (upper-
right), “Islam” (lower-left) and “poederbrief” (lower-right). Note that the
y-axises are scaled differently.
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With a frequency window of 28 days and a count of 4 the lowest OOV rates
were obtained.

9.4 Vocabulary selection using binary prediction

The results of the studies mentioned above show that by using temporal
information, better language model vocabularies can be constructed for
recency-sensitive task domains. By selecting recent training data, some of
the word history information as illustrated in Figure 9.2 can be captured so
that word occurrences in the task domain can be predictedmore accurately.
These approaches may be regarded as correction mechanisms for a selec-
tion method based on global word frequency information, either by nar-
rowing down the time window that is used to select the vocabulary words
(Rosenfeld (1995)) or by taking the global and recent word frequency in-
formation as separate information sources (Auzanne et al. (2000)). It can be
argued, however, that these approaches have a number of disadvantages.
A first disadvantage is that a number of parameters need to be set exper-
imentally (time-windows, word frequency thresholds). News can be highly
fluctuating and as a consequence, word frequency dynamics observed in a
training collection may differ from those in the target data. Furthermore,
in the context of broadcast news transcription, it is questionable whether
these parameters should be trained on broadcast news example data, or, to
obtain a more global impression of word frequency dynamics, on a general
news source, such as newspaper data. Another disadvantage is that these
approaches do not take long term temporal information into account but
instead focus on a relatively short recent time period. However, long term
information can be very useful for the selection or rejection of possible
vocabulary word candidates as will be explained below.

Using short term temporal information as a correction mechanism is
useful to enable the selection of words that would be missed when only
global word frequency information was taken into account. Global word fre-
quency information can be viewed as a measure of general “importance” of
a word in a certain time-window and in a specific domain. Both time window
and domain are determined by the training data selection. Having built up a
certain degree of general importance (word frequency), words enter the up-
per regions of a ranked word frequency list and often literally get stuck in
there: it takes some time for new words building up enough word frequency
and cast such words off their position. Either by preventing words to build
up too much word frequency (narrow down the time window), or by leaving
some room in the vocabulary for recent words (separate word frequency
lists), new or recent words can be given a better chance to be selected.
However, the first approach may result in an under-estimation of general
word “importance” if a word happens to occur infrequently in the chosen
time-window. This may especially occur for words with a strong periodicity,
such as “Santa-Claus”. The second approach has the disadvantage that the
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global word frequency list remains “contaminated” with words that were
very important in the past but rarely occur anymore. Names especially can
be contaminating with this respect. Take for example names of politicians
that appear frequently in the news. When politicians resign, only a few keep
a certain degree of general “importance”. The names of the less fortunate
ones, may contaminate the word frequency list for a long time. The same
applies for words that represent certain events that received a burst of at-
tention for a relatively short period of time. An example is the previously
mentioned word “poederbrief (English: letter containing possibly poison-
ous powder)”: it built up a very strong word frequency count during a short
period of time but appeared very rarely after this period.

Supposing that long term word history information as illustrated in Fig-
ure 9.2 could be captured into a usable metric, instead of applying ad hoc
correction mechanisms to word frequency information, long term temporal
information could really be incorporated in the selection process. Applying
such a selection procedure to the examples in the figure, would result in
“Clinton” going down in the rank order of candidates to be selected, al-
though it may keep a position with a high selection chance as “Clinton”
still regularly occurs in the news. Likewise, “Santa-Claus” and “Christmas”
would rise or go down in rank order in parallel with approaching or re-
ceding from the time period of maximum frequency. Finally, “Islam” would
rise because of its recent increase in word frequency and for the opposite
reason, “poederbrief” would go down.

It is however difficult to capture long term word history information
into a single metric. But as the newspaper data was stored per day in
the text database that is used for this research, word vectors containing
daily word frequency information for a certain time-window could easily
be generated (see Figure 9.3) and serve as a starting point in the search
for a suitable metric. A number of strategies were considered. One of the
first approaches that came to mind was using the vectors as word history
type representations. Using a clustering algorithm, similar vectors can be
grouped together to represent a word type. These types could post hoc be
characterized such as having a strong periodicity, having a certain degree
of decaying word frequency (word is rapidly or slowly losing importance)
or, the opposite, a rising word frequency (a word’s importance is growing).
These type definitions could then be used in the vocabulary word selection
procedure. However, such a method would become rather complex given
the relatively large word vectors, a clustering or classification procedure
that has to be repeated regularly to assign a type to new words and the
necessity to relate the word types to a desired behavior in the vocabulary
selection procedure.

Computing a running average over the vector, seemed a more workable
method. The average, either weighted or not, could then be used as a pre-
diction value for words occurring immediately following the chosen time
window (typically tomorrow, supposing that the data of today is available).
Unweigthed, a running average represents the number of times a word may



9.4. VOCABULARY SELECTION USING BINARY PREDICTION 135

be expected to occur on the target day. Using a weighted average, recent
occurrences of words could be counted more heavily than occurrences in a
more distant past. A drawback of this method, however, is that the running
average should preferably be computed differently depending on the word
history type. For a word that is loosing importance, an unweighted average
may be the most appropriate so that old frequencies still add some value
to the average. For a word that is gaining importance on the other hand,
the opposite produces the intended result: recent word frequencies must
add more weight to the average than old weights to enable its selection for
the vocabulary.

The running average method tried to incorporate both temporal inform-
ation and word frequency information directly into a single metric. As an
alternative, the running average could be used to obtain temporal inform-
ation only and to merge this information with general word frequency in-
formation in the domain. The (relative) word frequency information could
then be interpreted as a probability measure for a word ω occurring in a
specific task domain Dω, denoted as P(ω|Dω). The temporal information
must then provide a measure for the probability that a word ω occurs at a
specific point in time given its history Hω, denoted as P(ω|Hω). The prob-
ability that a word occurs in a specific domain at a specific point in time
P(ω|Dω,Hω) can finally be obtained by combining the two probabilities.

To obtain a metric containing temporal information only, the running
average procedure was slightly modified. Instead of incorporating word fre-
quencies as values in the word vectors, binary word occurrences served as
vector values: either a 0, when a word did not occur at a specific day, or a 1,
when a word occurred at least once a day (see Figure 9.3). This procedure
resulted in a long binary vector that was summarized in a so-called binary
prediction metric (B) by adding all binary counts and dividing this count
by the total number of days since the first day that a word occurred. For
instance, when a word occurred for the first time two days ago and was not
mentioned yesterday, it received a B value of:

B = (H0 − 2)+ (H0 − 1)
T

= 1+ 0
1+ 1 = 0.5 (9.1)

This “first-occurrence-count” was applied to remove the effect of time win-
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Figure 9.3: An example of a daily word frequency information of a word
represented in a vector for a certain time window (top) and the binary
version of this vector (bottom).
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dow length on the prediction of new words. As soon as new words appear,
they will have a high prediction value that quickly decays when their oc-
currence is only temporary. When the occurrences of new words remain
constant, the prediction values will remain constant as well. The binary
prediction metric is summarized in equation 9.2. Note that instead of us-
ing days as interval for measuring binary values, longer intervals can be
chosen. In this way short term periodicity of words (such as sports related
words that especially occur on Mondays) can be smoothed out.

B(ωi) =

T∑
t=0

b(wi)

H
(9.2)

where b is the binary value of word wi, T the time-window and H the
history of the word counted in days from the first non-zero value in the
binary vector onward.

Assuming that the binary prediction metric can be used as a represent-
ation of the temporal word history information, this metric must be com-
bined with the word frequency information (relative word frequencies) to
obtain a measure that can be used for the selection of words for the vocabu-
lary, denoted as S(ωi). As both information sources are highly dependent,
it is difficult to combine them in a probabilistic framework. Therefore, a
relatively simple merging function was chosen that consists of a weighted
multiplication of the information values. This choice was based upon the
following considerations. Recall that the goal of merging the two inform-
ation sources was to provide a measure that reflects both a general and
temporal “importance” of words in a domain at a specific point in time. In-
tuitively, when a word has a high general value (high word frequency) and
a low temporal value (low binary prediction value) this should be reflected
in a decrease of the selection measure S(ωi). In the opposite case the se-
lection measure should increase. To model such a behavior, merging the
two sources by multiplication was an evident choice. However, as the bin-
ary prediction values are proportions between 0 and 1 and the influence of
the multiplication on the final result value could be to small to obtain the
desired effect, a weight option was added to the binary prediction value in
the merging function (equation 9.3):

S(ωi) = B(ωi)1/α · F(ωi) (9.3)

where F(ωi) is the relative frequency of wordωi, B(ωi)1/α the binary pre-
diction of word ωi and α the weighting factor of the binary prediction
value.

In the next section the performance of this method is evaluated by com-
paring it with a number of vocabulary selection methods. The method de-
scribed above will further be referred to as the binary prediction method.
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9.5 Temporal word selection methods compared

To investigate the effect of different temporal word selection procedures on
Dutch data a longitudinal experiment was done that computes OOV words
in (simulated) Dutch news broadcasts, given lexicons produced using the
selection methods described earlier. The goal was to investigate which se-
lection method is the best method for a broadcast news transcription task
for the Dutch language.

9.5.1 Experimental design

Using different vocabulary selection methods, vocabularies containing 65K
words were created out of newspaper text data. These vocabularies were
evaluated by computing out-of-vocabulary rates on broadcast news tran-
scripts of the Dutch “NOS acht uur journaal (English: Eight o’clock news)”
in the period January 2002 - September 2002. As it was not feasible to gen-
erate transcripts of all news shows in this period manually, teletext and
autocues were used instead. Together these provide a realistic representa-
tion of the word usage in the news shows (see also Section 7.3). All tran-
scripts of one week were taken together (Monday to Sunday) and weekly
out-of-vocabulary rates were computed, resulting in 35 OOV rates for each
vocabulary selection method. For one week (the week preceding the 5th
of May) no OOV rates were computed as teletext data for that week was
completely missing from the database3. On average every week contained
23K words. In Figure 9.4 the total number of words per week are plotted.
OOV rates of the vocabularies will more or less follow this curve as the
OOV rate will generally be lower when there are less words that need to be
covered. Besides the number of words, the actual content of the broadcast
news shows in the particular weeks will also influence OOV rates. Note that
in this experiment the focus is not on the OOV performance fluctuations in
time but on the differences between selection methods.

Vocabularies were created using the following word selection strategies:

1. Based on static word frequencies:
A simple and widely used vocabulary selection strategy entails select-
ing the most frequent words from a training corpus spanning a fixed
time-period and using this vocabulary for speech recognition in a lon-
gitudinal task without making any adaptations. Such vocabularies are
further referred to as static vocabularies. To evaluate the performance
of such a selection method, four static word frequency files were cre-
ated using one year of data in a distant past (1999, referred to as S99),
data of the past three years (1999-2001, S9901), the last year (2001,
S01) and the last half year (last six months of 2001, S01L). The distant
past word frequency file was created to serve as a reference: it repres-

3Teletext capturing was off-line that week
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Figure 9.4: Number of test words (y) from teletext and autocues of
broadcast news shows (NOS 8uur journaal) for every week (x).

ents a vocabulary that is very much out-of-date. The other word fre-
quencies can be viewed as based on a look-back time window of half
a year, one year and three years. Vocabularies were created by tak-
ing the top 65K most frequent words. To give an idea of the number
of words that were used to create these vocabularies, the 1999-2001
word frequency file was based upon 255M words of newspaper text
data and contained 1,3M distinct words. The self-coverage of the top
65K words was 97.08%.

2. Based on open word frequencies:
Instead of using static word frequencies, word frequency counts can
simply be updated with a certain interval (for example every day or
week). Suppose that the initial word frequency file was created us-
ing one year of training data, after six months of updating, the word
frequency file describes one and a half year of data. In this sense,
the word frequencies are “open”. The vocabularies based on such up-
dated word frequency counts are therefore further referred to as open
vocabularies. Although this may not have a large effect on the rank-
ing of the words in the word frequency file, this method will slowly
force recently and frequently used words to a position in the word
frequency file that allows selection for the vocabulary. One open word
frequency file was created based on the word frequency file of 1999-
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2001 (O9901). The frequency counts were updated every week.

3. Based on closed word frequencies:
One can argue that using a long term word frequency file, either static
or open, to select words for a vocabulary has disadvantages. Words
that have built up a high frequency in the past, but should not be re-
garded as important words anymore, will stay in the vocabulary for
a long time. To avoid that these types of words being included in
the vocabulary, the text data’s time-window could be narrowed down.
However, this time-window should on the one hand be large enough
to obtain reliable word frequencies of the domain and on the other
hand, short enough to capture recent words successfully. To investig-
ate if such a method could improve OOV rates and what the optimal
window size is, three so called closed vocabularies were created, one
based on a word frequency time-window of approximately half a year
of data (168 days, CL168), one based on approximately a year (352
days, CL352) and one of one and a half year (520 days, CL520). The
last week that was incorporated in every word frequency file was the
one preceding the test week. Every week the time-window shifted one
week further, including the most recent week and removing the most
outdated week.

4. Based on rolling language models:
As an approximation of the RLM procedure described in Section 9.3,
for every week a new vocabulary was created using the following
procedure. The first 30K words of the vocabularies were taken from
the top 30K words from a master word frequency file based on the
1999-2001 newspaper text data. Next, words collected on the past 7
days (the look-back window) with a minimum relative frequency of
R = 0.01,0.025,0.005 (referred to as R01, R005 and R0025 respect-
ively) were added to the vocabulary. Instead of absolute counts, relat-
ive frequencies were computed to normalize for different amounts of
data in the time-window. Words that were added before but did not
appear during the past 28 days (forgetting window) were removed.
When there was still vocabulary space left after adding new words,
the most frequent words from the master vocabulary that were not
already included were added up to a vocabulary size of 65K words.

5. Based on binary prediction:
Different versions of the binary prediction method as described above
were implemented, varying the length of the time-window and the
weight of the binary prediction value. First, vocabularies were cre-
ated that used the binary prediction values only, so without merging
them with word frequency information, to rank the word lists. One
was open and uses a binary prediction vector based on the period
1999-2001 that was updated every week analogous to the open word
frequency method. Another was closed and uses a binary prediction
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vector based on a closed time-window of 380 days, well over a year
to enable the capturing of yearly periodicity. This procedure was re-
peated, this time however using both word frequency information and
binary prediction values, resulting in open binary prediction vocab-
ularies and a number of closed binary prediction vocabularies that
differ in the used time-window: 190 days (well over half a year), 380
days (well over a year) and 570 days (well over one and a half year).
All methods described hitherto used unweighted binary prediction
values. Vocabularies based on different weight assignments were cre-
ated using weights of α = 2 (referred to as for example B380W2) and
α = 5.

In summary, the following binary prediction methods were applied:

(a) without using word frequency information, one open (OBO9901)
and one closed (OBC380)

(b) including word frequency information, one open (BO9901) and
three different open ones with time-windows of 190 days, 380
days and 570 days (B190, B380 and B570 respectively).

(c) using weights for the binary prediction value: BO9901W2,
B190W2, B380W2, B380W5, B570W2.

All vocabulary selection methods based on word frequency information
alone are visually depicted in Figure 9.5. Half a year of text data is repres-
ented by one block.

9.5.2 Results

In Table 9.2 on page 142 the mean OOV counts, the minimum and max-
imum values and the standard deviations of the different vocabulary selec-
tion methods are listed. In Figure 9.6 on page 143 the means and standard
deviations are plotted. Below, the results are reported for every word selec-
tion strategy separately.

Static word frequencies

Of the vocabulary selection methods based on static word frequencies, as
expected, the one that uses outdated data of 1999 (S99) has the highest
overall number of OOV words. When the word selection procedure uses re-
cent data, OOV performances improve, although the results indicate that
the look-back time-window has to be sufficiently large. A look-back window
of only half a year (S01L) shows a marginal but significant improvement in a
paired t-test (t = 3.1848, df = 33, p ≤ 0.01) of OOV performance compared
to the method that uses outdated data, given it OOV rate of 1.94%. Increas-
ing the window to a year (S01) or three years (S9901) results in a further
improvement of the OOV performance to an OOV rate of 1,86% both. Given
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the comparable results of the last methods, looking back one year seems to
be enough to make the best possible selection of words using static word
frequencies. As the standard deviation for the longer time-window (S9901)
is lower compared to the shorter time-window (S01), it seems that word
selection becomes more robust using a larger time-window. However, this
cannot be warranted as the variances do not differ significantly at the 5%
level (F = 0.9748, df = 33).

In Figure 9.7 the OOV rates of the static word frequency methods are
plotted for every week in the test data, with on the x-axis the testing weeks
and on the y-axis the difference in OOV rate relative to the OOV rate of
the 1999 baseline method (recall that for one week no OOV rates were
computed as teletext data was missing completely for that week from the
database). It shows that the method based on the last half year of 2001
(S01L) has sometimes even a worse OOV performance than the method
based on outdated data.

'

&

$

%

Method min max. mean OOV mean OOV stdev
(cnts) (rate)

S99 123.00 806.00 485.91 2.06% 199.97
S01 106.00 796.00 440.50 1.86% 191.34
S01L 112.00 818.00 459.65 1.86% 196.61
S9901 106.00 786.00 440.38 1.94% 188.91
U9901 102.00 712.00 396.82 1.69% 162.71
CL168 108.00 719.00 404.21 1.72% 166.53
CL352 102.00 717.00 386.91 1.65% 160.91
CL520 110.00 734.00 393.79 1.68% 161.48
R01 106.00 710.00 399.71 1.70% 161.40
R005 106.00 700.00 392.59 1.67% 158.76
R0025 109.00 696.00 395.09 1.68% 159.49
OBO9901 120.00 842.00 486.26 2.07% 199.18
OBCL380 129.00 822.00 501.00 2.14% 200.64
BO9901 96.00 734.00 404.50 1.72% 169.47
BO9901W2 98.00 723.00 398.59 1.69% 164.49
B190 101.00 698.00 394.59 1.68% 161.22
B190W2 97.00 710.00 392.82 1.67% 162.26
B380 101.00 692.00 385.56 1.64% 158.77
B380W2 100.00 691.00 382.68 1.63% 158.14
B380W5 103.00 694.00 383.56 1.63% 157.67
B570 103.00 697.00 393.03 1.67% 160.48
B570W2 102.00 707.00 392.44 1.67% 160.45

Table 9.2: OOV performance statistics (minimum, maximum, mean OOV
counts, mean OOV rate and standard deviation) of all word selection
methods.
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Figure 9.6: Mean OOV counts and standard deviations of all word selec-
tion methods.

Open word frequencies

Updating word frequencies while proceeding through time, as is done with
the open word frequency method (O9901), has a relatively large positive
effect on OOV performance. Compared to the best performing static word
frequency methods (S9901 and S01), the mean OOV rate drops almost 10%
to 1.69%. A paired samples t-test shows that the difference is highly signific-
ant (t = 5.936, df = 33, p ≤ .001). To compare OOV rates on a weekly basis,
in Figure 9.8 the OOV rate improvements on the 1999 baseline method of
the open word frequency method and the merged results of the static word
frequency 1999-2001 and 2001 methods, are plotted. The merging is done
by taking the mean OOV rate for every data point.

The figure shows that the OOV rates of the open word frequency method
improve relative to the static methods as the weeks in the experiment move
further away from 2001. In the first weeks the open word frequency method
performs only slightly better than the static methods, but the improvement
increases slowly as the experiment proceeds. From the last week of April
onward a sudden positive improvement shift can be observed. It must be
noted that in this time period there was a lot of political consternation
about a new Dutch political party and upcoming elections4. These events

4In May the leader of this party was assassinated, the next week this party had a very
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Figure 9.7: Improvements in OOV rates relative to the static 1999
baseline method (S99) of the static word frequency methods based on
1999-2001 (S9901), 2001 (S01) and the last six months of 2001 (S01L)



9.5. TEMPORAL WORD SELECTION METHODS COMPARED 145

introduced a lot of words that were previously not seen very frequently.
The open word frequency method apparently manages to capture some
of these new words. Examples of frequent new words of the week of 12
May 2002 that are in the updated vocabulary and not in the static vocab-
ulary are: “LPF”, “Herben”, “Kamerzetel”, “partijbaronnen”, “Volkert” and
“lijsttrekkersdebat5”: these are all words that do not, or do not very fre-
quently appear in the complete 1999-2001 text data.

Closed word frequencies

Recall that the closed word frequency method was introduced to avoid that
words that have built up a high frequency in the past, but should not be
regarded as important words anymore, are included in vocabularies. The
results of these methods, depicted in Figure 9.6, suggest that this proced-
ure works, as long as the chosen time-window is neither too short nor too
long. If the time-window is too short, represented by the CL168method that
uses a time-window of approximately half a year, OOV rates worsen a little
relative to the open word frequency method (O9901): from an OOV rate of
1,69% to 1,72%. For larger time-windows, approximately a year (CL352) and
one-and-a-half years (CL520), the closed word frequency method results in
better OOV rates compared to the open word frequency method: 1,65% and
1,68% respectively. However, the difference between means is only signific-
ant for the closed (CL352) method (t = 2.961, df = 33, p ≤ .006).

Note that the results of using only a time-window of half a year is in
line with the results of the static word frequency method based on the
last half year of 2001 (S01L): a time-window of only half a year is too short
for an optimal word selection. Furthermore, the results indicate that a time-
window that exceeds a year (520 days in the CL520 method) can undo some
of the performance gain that is obtained by using a time-window of a year
(352 days in the CL352 method): although small, the performance differ-
ence of these methods is significant according to the paired samples t-test
(t = 2.294, df = 33, p ≤ .028). Hence, for optimal word selection, a closed
look-back window of one year seems the most appropriate word selection
method hitherto. In Figure 9.9 the weekly OOV rates of the CL352 method
and the open word frequency method (O9901) are plotted relative to the
baseline method. Again, the sudden shift from the last week of April on-
ward appears.

high score in the elections
5English translations: LPF – Lijst Pim Fortuin, a Dutch political party; Herben – name of a

Dutch politician; Kamerzetel– Seat in the Dutch Lower Chamber; partijbaronnen – party bar-
ons; Volkert – first name of the man who assassinated a Dutch politician; lijsttrekkersdebat
– party leader debate.
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Rolling language models

Unexpectedly, the word selection method based on the rolling language
model strategy did not outperform the open word frequency method or
the best performing closed word frequency method. Given that the RLM
method is more complicated (using both updating and forgetting, defini-
tion of thresholds) relative to the plain updating of word frequencies, the
result is somewhat disappointing. The RLM method with a relative word
frequency threshold of 0.005 showed the best overall OOV performance,
1,67%, and does not differ significantly from the result obtained using the
open word frequency method and the closed word frequency method based
on 352 days.

binary prediction method

The vocabulary selection methods that are based on binary prediction val-
ues alone, hence temporal information only, evidently do not have a very
high OOV performance as can be read off in Figure 9.6. However, when
the time-window is long, as in the open binary prediction only method
(OBO9901), the OOV performance is comparable with the static 1999 word
frequency method (S99). Apparently there is too much loss of information
when using binary prediction alone with a closed time-window of 380 days.

When word frequency information is added, OOV performance improves
significantly. However, whereas the open binary prediction method
(BO9901) outperforms the static 1999-2001 word frequency method
(S9901), neither the weighted nor the unweighted variant reach the per-
formance of the open 1999-2001 word frequency method (O9901). The
weighted binary prediction method comes close but has still significantly
more OOV words (t = 5.7973, df = 33, p ≤ .001). The closed binary predic-
tion methods do not show large improvements on earlier methods either.
The closed binary prediction method with a 380 time-window (B380) dif-
fers marginally from the closed word frequency method with the 352 day
time-window (CL352), although the difference is significant at the 1% level
(t = 3.6916, df = 33).

When however the binary prediction values are weighted, the added
value of the binary prediction method seems to grow. When a weight of
α = 2 is applied to the closed binary prediction method of a 380 day time-
window, this method outperforms all word selection methods. A weight of
α = 5 shows a small degradation relative to α = 2 but the difference is not
significant (t = 0,671, df = 33, p ≤ .551).

9.5.3 Discussion and conclusion

The experiment has shown that OOV performance of vocabularies benefits
from an adequate temporal data selection procedure. OOV performance
improves when more recent data is selected. A frequent adaptation of the
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vocabulary to changing word usage through time, provides additional OOV
performance gain. In Figure 9.8 it can clearly be observed that OOV counts
increase for vocabularies that are not adapted this way when the test data
moves further away from the data selection period. Important news events
that have such an impact on society that they dominate the news for a
relatively long time, consolidate this effect and increase the necessity for
adaptation of some kind. Updating word frequency counts using a parallel
corpus such as newspaper text data and proceeding with the selection of
the most frequent N words for the vocabulary, proved to be a simple but
effective adaptation method. Best results are obtained when a closed look-
back time-window of approximately one year is used. Providing that there
is an up-to-date parallel corpus available, this method can be regarded as
the most optimal solution for vocabulary selection, given its performance
in proportion to its effort.

Parallel text source

It must however be noted that the reported results may change when other
parallel text sources are used for adaptation. Up-to-date newspaper ma-
terial is possibly not always directly available, forcing speech recognition
system maintainers to use other, less extensive parallel sources for updat-
ing, such as teletext subtitling. The question is then, whether this may in-
fluence adaptation effectiveness. When the collateral data source is indeed
teletext subtitling, adaptation effectiveness may be expected to decrease as
newspapers will often have a small lead over broadcast news shows with
respect to certain news items. The fact that in this experiment newspaper
data was used as a parallel data source used for adaptation, may be an
explanation for the disappointing results of the RLM method relative to
the other methods. In Auzanne et al. (2000), compared to a static vocabu-
lary selection method, OOV rates could be reduced with 20% using the RLM
method, which is much larger than the improvements observed in this ex-
periment. Auzanne et al. (2000) used news-wire text data for adaptation:
it has a lower news coverage compared to newspapers. Therefore, it could
well be that the disappointing performance of the RLM method is due to
the relatively high performance of the other methods in the comparison,
all based on newspaper data.

Window size

Concerning the window sizes that are used for updating word frequency
counts, using more or less than approximately one year does not improve
OOV performance. This was first observed with the static word frequency
methods. Here the static 2001 method (S01) almost equals the performance
of the static 1999-2001 method (9901). This tendency was also found with
the closed word frequency methods, that gave the best OOV performance
using 352 days, and with the binary prediction method that produced the
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best overall results with a time-window of well over a year. The deterior-
ating performance of a shorter time-window can be explained by the fact
that such a time-window may not be able to capture words that have a not
very high but at least a consistent frequency (see also the adaptations to
the RLM method as discussed in Section 9.3), or words having a relatively
high frequency that by coincidence were only sparsely observed in the time-
window. The most probable cause of the performance degradation that is
observed with larger window sizes, is that words that were important in a
more distant past but are not relevant anymore in up-to-date news events
are unjustly included in the vocabularies. Apparently, this already happens
when the time window is prolonged to one-and-a-half years. This hypo-
thesis is confirmed by the results of the closed word frequency methods
compared with the results of the open word frequency method (O9901).
The closed word frequency method was created especially to prevent that
formerly important words are included in the vocabularies. Using the long
time window (CL520), OOV performance improves slightly, but the best res-
ults are obtained using a window of a year (CL352).

Binary prediction

The differences in OOV performances of the binary prediction procedures
in general justify a more detailed discussion. Starting with the procedures
that only used temporal information for word selection, the results show
that long-term temporal information (OBO9901) bares more predictive in-
formation than short term temporal information (OBCL380). The long-term
method has an OOV performance comparable with a method based on
outdated static word frequency information, which is not really high, but
at least indicates that temporal information has a reasonable predictive
power for word selection. When temporal information is combined with
word frequency information, OOV performances improve drastically, but
the question is, what exactly the separate information sources contrib-
ute to this improvement. Comparing the open word frequency method
(O9901) with the open binary prediction method (BO9901, BO9901W2) –so,
comparing long-term, updated word frequency alone with a combination
of long-term updated word frequency information and long-term updated
temporal information– a small but significant performance degradation is
observed when temporal information is included. However, when including
and excluding temporal information is compared for relatively short-term
word frequency and temporal information (Cl168 with B190, CL352 with
B380, CL520 with B570) a reverse tendency can be observed. Methods that
also incorporate temporal information have a slightly better performance
than methods that use word frequency information only. This seems to
contradict earlier findings that long-term temporal information contains
more predictive information than short term temporal information. How-
ever, one can argue that such a conclusion cannot honestly be drawn as in
these earlier findings, single information sources were compared whereas
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the latter comparisons include different information sources. It is possible
that the opposite effects on OOV performance of adding temporal inform-
ation, can be explained by the performance of word frequency information
itself. When word frequency information is not robust enough, for example
when long-term word frequency information is used (O9901), adding tem-
poral information only worsens word selection performance. When how-
ever word selection has already reached a good OOV performance on the
basis of word frequency alone, temporal information can improve word
selection. Although such an explanation fits in the observed results, the re-
ported evidence is evidently too small to warrant any strong conclusion in
this direction.

Final conclusions

On the basis of the results the following final conclusions can be made:

• A selection of approximately one year of recent newspaper data, may
be regarded as an optimal starting point for a word frequency based
selection of vocabulary words for the representation of Dutch news
broadcasts. The results of the experiment suggest that one year is
long enough to capture words that have a not very high but consistent
frequency, and short enough to reduce the chance of unintentionally
including words in the vocabulary that have built up high frequency
counts in the past but are not relevant anymore in up-to-date news
events.

• In longitudinal speech recognition tasks in the broadcast news do-
main, periodic updating of the vocabulary is necessary as to enable
the recognition of new words that gradually appear over time.

• A simple but effective procedure for periodic updating is using a shift-
ing look-back time-window of approximately one year for word selec-
tion based on word frequency counts.

• The results of the experiment suggest that including temporal word
usage information in the word selection procedure can improve OOV
performance of vocabularies additionally provided that the word fre-
quency information is already robust in itself.

9.6 Summary and final remarks

In this chapter, the selection of words for the language model vocabulary
was addressed. It was argued that an optimal word selection procedure is
important as to reduce the number of out-of-vocabulary words in speech
recognition tasks. Word selection was addressed as being a matter of ap-
propriate training data partitioning: either on the basis of content inform-
ation or on the basis of temporal information. Using temporal information
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for data partitioning was discussed in more detail. A number of vocabulary
selection methods based on temporal data partitioning and word frequency
information were discussed. It was argued that word frequency information
alone is inadequate to deal with word importance fluctuations over time.
In order to capture such dynamics in a domain that typically shows large
word importance fluctuations, the broadcast news domain, a new method
was introduced, called the binary prediction method. This method tries
to incorporate temporal information directly into the selection procedure.
Indeed, this method gave the best OOV performance in a vocabulary selec-
tion experiment, that compared a number of different vocabulary selection
techniques. However, the gain was very small and it may be worthwhile
to address more research to the implementation of the binary prediction
method. For complexity reasons it was chosen to use temporal information
in a highly simplified way and in a compressed format. It can be argued
that by doing so, only little temporal information remained to be helpful in
the vocabulary selection procedure. A improved paradigm for representing
temporal information may result in a more substantial OOV performance
improvement.



Chapter 10

Compound splitting

This chapter addresses the splitting of compound words in order to improve
large vocabulary speech recognition performance. A data-driven compound
splitting algorithm is described and language model performances are com-
pared in terms of out-of-vocabulary rates and word error rates.

10.1 Introduction

In the previous chapter the phenomenon of compounding in Dutch was dis-
cussed in the context of lexical coverage: as words can be joined together
almost freely to form new words the number of distinct words in Dutch is
relatively large (even theoretically infinite) compared to non-compounding
languages such as English or Italian. Take for example, the valve cap of a
bicycle tire that can be translated into a single compound word in Dutch:
“fietsventieldopje”. Likewise, Dutch has the compound “autobandventiel-
dopje” which translates to the valve cap of a tire of a car, and so on. Given
this agglutinative behaviour, it was concluded that for a compounding lan-
guage the vocabulary space is extra-sparse and that it is therefore import-
ant to select accurately the words that are expected to appear in the task
domain. Different vocabulary selection methods, as discussed in the previ-
ous chapter, can be applied for this purpose, but another, or possibly ad-
ditional approach, would be splitting or decompounding compounds that
are encountered in the language model training corpus, back into pairs
(or n-tuples) of single constituents. The compound “autobandventieldopje”
could for example be decomposed into “auto band ventiel dopje”. This pro-
cedure evidently increases the total number of words, but will usually re-
duce the number of distinct words as single constituent parts are also ex-
pected to appear on their own and in other compounds. From a lexical
coverage perspective, a reduction of distinct words in a corpus represent-
ing a certain task domain, means that with the same vocabulary size, more
words can be covered in the domain, or the inverse, less words will be out-
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of-vocabulary (OOV). The importance of reducing OOV words for a speech
recognition system’s vocabulary was discussed earlier. One OOV word can
result in more than just one recognition error, as the word that replaces the
OOV word in the recognition process, often damages the n-gram prediction
of the next word. Adda-Decker and Adda (2000) investigated compound
splitting for German in order to limit lexical variation in text corpora. By
splitting compounds in the corpus, OOV rates of 65K lexicons could be
reduced by almost 20%. Preliminary studies (Ordelman et al., 2001b,c,d;
Ordelman and De Jong, 2003) indicated that compound splitting can be
beneficial for Dutch lexicons as well.

But although compound splitting may improve lexical coverage and re-
duce OOV words for speech recognition vocabularies, it is uncertain wheth-
er it improves overall speech recognition performance, as has often been
suggested but never adequately investigated for Dutch. There are a num-
ber of side-effects of compound splitting that may undo a possible speech
recognition performance gain due to an improved OOV rate. Such disturb-
ing side-effects can be classified according to the different stages in the
recognition (development) process in which they occur:

• Acoustic modelling

From an acoustic modelling point of view it is easier to recognise
longer words than shorter words as longer words bear more acous-
tic information. Some evidence for the reduced speech recognition
accuracy caused by the introduction of short compound constituents
was found in Berton et al. (1996).

• Dictionary generation

The phonetic transcriptions of former compound parts may depart
from the actual pronunciation of the compound when co-articulation
effects occurred at constituent boundaries. The transcription of a com-
pound reflects existing within-word co-articulation effects, such as the
unvoiced [ t ] that changes into a voiced [ d ] before a voiced plosive
as in “voetbal English: football” that is phonetically transcribed as
[ v u d b A l ]. Supposing that the word “voetbal” is decomposed into
the words “voet” and “bal” the co-articulation effect disappears in the
tuple of compound parts as the final [ t ] in “voet” is pronounced
as [ t ]. Consequently, there will be a mismatch between the actual
pronunciation of a compound and the phonetic representation in the
phonetic dictionary of the recogniser.

• Language modelling

It cannot directly be foreseen what the effect of compound splitting is
on n-gram estimation. The n-gram information is practically reduced
to the (n−1)-gram information as the decomposed compound pushes
one or more context words out of the n-gram. For example, suppose
that a compound “ventieldopje” was well modelled using a standard
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text corpus. After compound splitting, the frequent trigram “ventiel
op de” may disturb the prediction of “ventiel dopje”.

The question is to what extent the positive effect on speech recognition per-
formance of an improved lexical coverage will be reduced by the spreading
of the acoustic information over word-tuples, possible mismatches in phon-
etic representations of compound parts and the loss of context information
for the n-grams. One could anticipate some of these side-effects by apply-
ing restrictions to the compound splitting procedure aiming at speech re-
cognition performance optimisation, for example, by setting a minimum
word length for the compound parts, or by restricting compound splitting
to low frequent compounds. Highly frequent compounds normally have a
high chance of being recognised correctly. Their length guarantees a relat-
ively large amount of acoustic information that can be used for its recog-
nition. In addition, as their frequency is high, the n-gram estimates may
be expected to be reasonably well trained. One can argue that is therefore
preferable not to decompose such compounds, in spite of the fact that it
would improve lexical coverage. This approach can be related to methods
that try to reach at speech recognition performance improvement by com-
bining frequent orthographic word tuples, referred to as multi-words, into
single items in the recognition lexicon (Gauvain et al., 1997) instead of de-
composing words.

Restricting the compound splitting procedure can also be based on other
grounds. From a lexical coverage optimisation point of view, it can be ar-
gued that it may not always be beneficial to decompose every compound.
Every decomposition of a compound involves a re-ranking of words in a
frequency-sorted word list. Given that the vocabulary is selected out of
the N most frequent words, words will migrate from the out-of-vocabulary
space to the vocabulary space and vice versa due to the compound splitting
procedure. When a highly frequent compound is split into two highly infre-
quent parts that by themselves would not be incorporated in the vocabu-
lary, the decomposition has only little added value. Instead, as the infre-
quent parts at once become very frequent, and as a consequence, enter
the vocabulary space, another frequent word has to be removed from the
vocabulary space to keep an equal number of words. The final effect of com-
pound splitting may therefore be reduced coverage. This type of restricted
compound splitting, aiming at a better lexical coverage, will be discussed
in detail in Section 10.4.

A complicated factor regarding compound splitting in a Dutch speech
recognition context, is the handling of the binding morpheme “s”. For
Dutch, it is allowable to insert this binding morpheme between specific
constituents1, as in “regering-s-leider (English: leader of the government)”.
There are three possible approaches for dealing with the binding morph-
eme in compound splitting:

1Whether the insertion of a binding morpheme is correct or incorrect is formalised in
“Het Groene Boekje” containing Dutch spelling rules
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• Interpret the binding morpheme as a single constituent

In this approach the binding morpheme becomes a lexical unit in it-
self (regering s leider), ignoring the fact that in this way units are
introduced that are not linguistically meaningful (see the discussion
about linguistically meaningful units below). This benefits the reduc-
tion of distinct words as the surrounding words will not be “contam-
inated” by the binding morpheme so that introduction of new lexical
units (e.g., regerings which is not a regular word in Dutch) can be pre-
vented. The disadvantage of this approach is that the mono-phone
binding morpheme is vulnerable to recognition errors.

• Attach the binding morpheme to the preceding word

This approach (regerings leider) will prevent the introduction of re-
cognition errors originating from a stand-alone binding morpheme.
The disadvantage of this approach however, is that new lexical units
are introduced so that the reduction of distinct words, the main goal
of compound splitting, will be smaller.

• Remove the binding morpheme

Crudely deleting the binding morpheme (regering leider) removes pos-
sible disturbing effects of the binding morpheme mentioned in the
two approaches above: the binding morpheme cannot be incorrectly
recognised and the reduction of distinct words is maximised. How-
ever, this approach at least introduces another error source as exist-
ing acoustic evidence (the “s” that is pronounced) cannot be accoun-
ted for anymore.

Finally, the question must be addressed as to whether the application in
speech recognition, a compound splitting algorithm needs to produce lin-
guistically meaningful units. It does not, some would say, as long as the
number of correctly recognised words grows after the reconstruction of a
stream of either meaningful of meaningless units. It must be noted how-
ever that it is exactly the reconstruction process that may be difficult. As
some units will be miss-recognised the reconstruction process can either be
impossible (there are no valid combinations) or produce an incorrect recon-
struction (the combination is valid, but the reconstructed word is not the
original word, only a part of the word was recognised correctly). Whether
this is really a problem depends on the task for which speech recognition is
deployed. At least in an information retrieval framework, one could easily
skip the reconstruction step and apply the same compound splitting pro-
cedure to all words encountered in the process (query, parallel corpora): re-
trieving the right documents is the primary aim, not the linguistic validity
of the speech recognition transcripts. Having recognised any part of it with
this respect, is always better then not having recognised it at all. But also for
other tasks, the benefits (assuming they exist) of compound splitting may
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hold, despite incorrect reconstructions. Supposing that originally a com-
pound could not be recognised correctly, an incorrect reconstruction after
a speech recognition run that uses compound splitting, will not worsen the
transcript. In the worst case, the compound is still not recognised correctly,
but possibly at least a part of it is correct. In this research however, the ap-
proach aimed at a decomposition into existing words, hence linguistically
meaningful units, as this also guarantees a high coverage of the phonetic
dictionary that is used. Units that are not linguistically meaningful will evid-
ently not exist in standard phonetic dictionaries. Moreover, such units may
have infrequent phone combinations at the constituent boundaries which
may damage transcription accuracy of grapheme-to-phoneme transcription
tools.

To investigate the effect of compound splitting with and without re-
strictions on speech recognition performance, language models were cre-
ated based on newspaper text data. In the next section (Section 10.2), the
splitting algorithm to create the decomposed text versions is described,
followed by an evaluation of unrestricted compound splitting in terms of
lexical coverage (Section 10.2.4). Next, restricted compound splitting aim-
ing at improving lexical coverage is discussed in detail (Section 10.4). In
Section 10.5, the language models created using unrestricted and restricted
compound splitting methods are evaluated in a broadcast news transcrip-
tion task. The results of the evaluation are discussed in Section 10.5.3.

10.2 Splitting algorithm

10.2.1 Introduction

Detecting compound words accurately is difficult and actually requires a re-
fined morphological analysis. In some cases, also semantic information is
needed to decide on the validity of a decomposition. As morphological and
semantic analysis tools were not available for this research, a compound
splitting method had to be found that does not require higher level inform-
ation sources and has a performance that enables a proper investigation of
the effect of compound splitting on speech recognition.

A number of compound splitting methods are discussed in the literat-
ure. In Adda-Decker and Adda (2000), a limited set of 335 German decom-
position rules were developed empirically using a newspaper corpus. In this
study, the decomposition of compounds was investigated related to lex-
ical coverage in speech recognition and grapheme-to-phoneme translation.
In Pohlmann and Kraaij (1996), Dutch compounds are decomposed based
upon a compound well-formedness table of allowed syntactic class combin-
ations, proposed by Vosse (1994). This method requires labelling of com-
pound parts with syntactic categories so a lexicon with syntactic inform-
ation is needed. In this study, compound splitting was investigated in an
information retrieval framework. Also for the use in information retrieval,
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Monz and de Rijke (2002) implemented a character-based noun-noun com-
pound splitting algorithm. This algorithm tries to split an input string at
every character position until a noun is identified as the prefix of the string
and the remaining part can be (recursively) identified as a noun as well. For
the identification of the nouns the Dutch CELEX lexicon (Baayen et al., 1993)
was used. A data-driven compound splitting method, applied in a German
speech recognition task, was proposed by Larson et al. (2000). Compound
words are split according to the statistical relevance of iteratively generated
splitting points. In this study the frequency of words containing a poten-
tial constituent were used to define local maxima. When, moving both from
left-to-right and from right-to-left through the compound, at some point a
local change maximum was encountered, this splitting point was regarded
as relevant.

For the development of the grapheme-to-phoneme converter (see also
Chapter 4), a large pronunciation lexicon (large part of “De Grote Van Dale”
Dutch dictionary, further referred to as GVD lexicon) comparable with the
Celex lexicon2, was used. This lexicon could be used in a compound split-
ting algorithm as developed by Monz and de Rijke (2002). However, it was
decided not to use this method and the GVD lexicon for a number of reas-
ons. Although the GVD lexicon has a relatively high overall coverage of the
words encountered in the newspaper corpora, a preliminary study showed
that compound coverage was relatively low. Compound words are “inven-
ted” every day and as the GVD lexicon is a few years old, recently inven-
ted compounds will be missed. Moreover, the policy of dictionary publish-
ers usually is not to include all possible compound words in dictionar-
ies. Most of the times, a few frequent examples within a semantic context
will do: when “aarbeienjam (English: strawberry jam)” en “bosbessenjam
(English: blueberry jam)” are given, another type of preserve such as “per-
enjam (English: pear jam)” is regarded as redundant. Furthermore, the GVD
lexicon contains many items that are not words. As the lexicon was com-
piled for the training of grapheme-to-phoneme conversion tools, non-word
lexical items such as “achtig (English: ish)” and “elijk (English: ly)” were
included. These occurrences could severally damage compound splitting
performance.

To enable compound splitting of recent compound words, a data-driven
method seemed the best option. However, the method of Larson et al.
(2000) is computationally expensive compared to an alternative data-driven
approach that is reported here. Instead of using the GVD lexicon, the word
list of all words in the newspaper corpus was used as a starting point for
compound splitting. At least, this list would also contain recently inven-
ted compounds. However, as this word list contains many non-word lexical
items as well, the compound splitting algorithm had to adapted to reduce
the number of false alarms or incorrect compound splittings due to the
occurrence of such items. A “greedy” compound-search algorithm was de-

2The GVD lexicon does not however include syntactic category labels
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veloped that uses sorting, word length information and word frequency in-
formation to detect and split compounds. It must be noted that it was not
the intention to develop a perfect compound splitting algorithm, but in-
stead an algorithm that has a compound splitting performance with a high
recall and precision score so that the effect of splitting compound words
on speech recognition performance could be adequately investigated.

10.2.2 Search algorithm

First, a compound was defined as a word that can be split into at least two
separate words, an α and a β constituent, that both exist as single words
with a minimum frequency of 10 in the text database. The minimum fre-
quency was introduced to avoid that words that normally do not occur in
Dutch as single items but by accident3 appear in the text data, produce in-
correct compounds. Furthermore, both constituents of a compound must
have a minimum length of six characters. This restrictions was imposed to
the splitting procedure to reduce the amount of false compound detections,
such as in voorstel “English: proposition” that should not be split into “voor
(English: before)” and “stel (English: pair)”. Note, that this restriction also
reduces possible disturbing effects on speech recognition performance in
advance: the number of words that are six characters and shorter —words
that are in principle harder to recognise correctly due to acoustic confus-
ability as discussed earlier— will not increase by the compound splitting
procedure. Finally, a compound was allowed to have a binding morpheme
“s” that at this stage was interpreted as a stand-alone constituent (e.g.,
regering-s-leider). The decision to attach the binding morpheme to the pre-
ceding word or delete it completely, as suggested as possible approaches
for dealing with the binding morpheme discussed in the introduction, was
postponed to later processing stages.

To collect the largest possible number of compounds, a word list of
more then 1,5M unique words collected from the available text data, was
alphabetically sorted. In this way, the first part of a compound, further
referred to as the α-constituent, always precedes the compound: “voet-
bal (English: football)” for instance, precedes compounds such as “voet-
balschoen (English: football boot)”, “voetbalstadion (English: football sta-
dium)” and so on. By descending the word list and checking if the current
word is used as an α-constituent in the next entries and the remainder
of the word exists as a single word in the list as well, compound words
could be detected. Note that words with an initial uppercase were discarded
to avoid false compound detections such as “Barend-recht”, which is the
name of a city that should not be decomposed into a name (“Barend”) and
a word (“right”)4. In order to find possible alternative splitting methods for
a words, this method was repeated using a list of words in reversed order

3Due to normalisation procedures or because they are of foreign origin
4An adequate normalisation of the text data is important
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so that words became search key for final constituents: the word “stadion
(reverse: noidats)” could for instance be found as final constituent in “vo-
etbalstadion (reverse: noidatslabteov)”. A third compound-search detected
words with constituents ending in the suffixes “ing(s)”,”ingen”, “heid(s)”,
“heden”, “schappen”, “schap(s)”. When these suffixes appear in the middle
of words, these words are always compounds that can be split after this
suffix. The greedy compound search algorithm found 323.213 compounds
with at least two constituents in the first run. These compounds were put
in a conversion table with the compound in one column and a compound
splitting solution in the other.

10.2.3 Multiple splitting alternatives

Of 6052 compounds the algorithm produced two or more possible split-
ting solutions. This happened for example when a compound could be split
into three or more constituents, such as in “wassenbeeldengallerij (English:
waxwork gallery)” that can be split into “wassenbeelden-gallerij” (preferred)
and “wassen-beeldengallerij” (semantically poor). This is usually not prob-
lematic however, as the compound that is left after a first decomposition
step, is decomposed in successive steps of the iterative compound splitting
procedure. However, other examples, such as those in Table 10.1 also pro-
duce implausible compound splitting alternatives5. Although a majority
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compound plausible implausible
reactiestappen reactie–stappen reacties–tappen
koningspaarden koning–s–paarden koning–spaarden
meubelsmokkel meubel–smokkel meubels–mokkel
schijntrappen schijn–trappen schijnt–rappen
politiekringen politie–kringen politiek–ringen

Table 10.1: Compounds with more than one possible compound split-
ting

of the decomposition alternatives produced by the compound search al-
gorithm are possible, not every alternative is plausible. A native speaker of
Dutch will in general be able to pick the most plausible one out of multiple
compound splitting alternatives although in some cases context informa-
tion is required to make the decision. In order to select the most plausible
compound splitting solution automatically, information had to be found
that could help to make this decision automatically.

5Translations of the compounds in Table 10.1 from above: reaction steps, horses of the
king, smuggling of furniture, dummy kicks and police circles
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Observing the list of multiple splitting alternatives, it was noted that
often the most plausible alternatives were constructed out of constituents
that were in general words with a higher frequency than the ones in the
implausible alternatives. Therefore, it was assumed that general word fre-
quency could be deployed for deciding which of the alternatives is the most
plausible one. Supposing the task is to fill two empty compound slots with
words, so that the concatenation of the two slots produces a compound
word C, the probability that a particular word α is chosen for the first slot
out of all possible words in our corpus is its relative frequency in the cor-
pus, defined as:

f(α)
N

(10.1)

Assuming that the second slot is filled independently from the first slot6,
the probability of filling both slots with two given words α and β is the
product of the two relative frequencies:

P1(αβ|C) = f(α)
N

· f(β)
N

(10.2)

A first test run showed that using this information source alone could
not provide enough information for a successful detection of the correct
compound splitting alternative. Therefore, a second observation in the list
of multiple splitting alternatives was deployed in the decision procedure:
there are a large number of compounds that share the first constituent, for
example “drugs”. The probability of “drugs” being the first constituent of
a compound may therefore be regarded as relatively high. In the opposite
case, for other words it is not likely that they appear as first or final con-
stituent of a compound. By computing the within-compound frequency of
constituents this information could be used to detect the most plausible
alternatives. This within-compound constituent probability was computed
by counting all occurrences of a particular constituent α in the set of com-
pounds (fC(α)) and normalising over all compounds (Ncomp):

fC(α)
Ncomp

(10.3)

The probability that two particular constituents α and βmake a compound
C was then defined as:

6This is in practice obviously not true as the concatenation of words will be forced by
semantic considerations.
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P2(αβ|C) = fC(α)
Ncomp

· fC(β)
Ncomp

(10.4)

Finally, the general constituent frequency and within-compound frequency
information were combined in a plausibility measure
Qsplit , a multiplication of the probability estimates of both sources :

Qsplit =

overall︷ ︸︸ ︷(
f(α)
Nconst

· f(β)
Nconst

)
·

within−compound︷ ︸︸ ︷(
fC(α)
Ncomp

· fC(β)
Ncomp

)
(10.5)

To check the performance of the decompound probability measure, the
GVD lexicon described above was used as a reference. For every compound
that had splitting alternatives, it was checked if the compound appeared in
the GVD lexicon. If so, the splitting alternative suggested by the algorithm
(Equation 10.5) was compared with the compound splitting solution sug-
gested by the GVD lexicon. Of the 6052 compounds with multiple altern-
atives, 708 existed in the GVD lexicon as compounds, 13 compounds ap-
peared to be false alarms as these existed in the GVD lexicon but were not
regarded as compounds. Of the 721 compounds that were checked, 621 of
the decompound solutions corresponded with the solution provided by the
GVD lexicon, 87 solutions were different (see also Table 10.2). Given this
score, the detection of the most plausible compound splitting alternative
was regarded as reasonably successful. The compound conversion table
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compounds with alternatives percentage
total 6052
in GVD 721 11.91%
not in GVD 5331 88.09%
correct 621 86.13%
with errors 100 13.87%
false alarms 13
incorrect 87

Table 10.2: Alternative selection evaluation statistics.

discussed so far only provided a pairwise compound splitting solution with
only an α and a β constituent. A compound, such as for example:

“wassen-beelden-gallerij”,

that should be split into three constituents, was given the compound split-
ting:
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“wassenbeelden-gallerij”

or:

“wassen-beeldengallerij”.

These compounds had to be decomposed in repeating runs until no more
compounds were detected in the decompound column of the conversion
table. In the next two runs that were needed, a total of 12740 entries were
altered this way.

10.2.4 Evaluation of splitting accuracy

To evaluate the complete compound splitting table, the same procedure
as with the alternative detection evaluation was applied. If a compound
appeared in the GVD lexicon the compound splitting solutions produced
by the splitting algorithm and those provided by the GVD lexicon were
compared. If the GVD lexicon did not provide a compound splitting solu-
tion, it was assumed that the algorithm had produced a false alarm: the
compound apparently was not a compound. Furthermore, as the intention
was to develop a compound splitting table with an optimal performance,
the performance information was directly used to improve the compound
splitting table. So, after the evaluation of the initial compound splitting
step, detected incorrect splitting solutions were replaced by the correct
solutions from the GVD lexicon. The corrected table was then used in the
steps that followed.

It must be noted that this way only a biased subset of the compounds
could be checked, namely those compounds that also appeared in the GVD
lexicon. Going manually through the other compounds however did not
reveal unexpected compound or splitting occurrences. Unfortunately, be-
cause of the large data set, the recall of the compound splitting algorithm
could not be tested but due to the design of the algorithm it is expected to
be high: only compounds that contain a word that was not seen as a single
lexical item in almost four years of newspaper data could not be detected.

In Table 10.3 the scores of the compound splitting steps are listed. First,
the performance of the initial compound splitting step was evaluated (first
iteration). As this step produced compound splitting solutions with two
constituents only, compound splitting solutions with more than two con-
stituents in the GVD lexicon could not directly be compared. Therefore,
a compound splitting solution was regarded to be correct if its boundary
matched one of the compound boundaries given in the GVD lexicon. The
precision score after the initial compound splitting step is 96.69%. After the
decstep1 evaluation 113 incorrect splitting solutions were corrected in the
compound splitting table. The 764 false alarms and GVD corrections with
constituents smaller than 6 characters were deleted (1237 in total). With
the corrected compound splitting table the splitting solutions were decom-
posed in two subsequent steps. In the second iteration 10,057 entries were
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altered (2-tuples to at least 3-tuples), in the third the last 43 entries. As
detected incorrect compound splittings were corrected after every step, no
errors could be detected after the second iteration. Given the high per-
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after entries 323,213
1 iteration in GVD 40,806 (12.63%)

not in GVD 282,407 (87.37%)
correct 39,457 (96.69%)
false alarms 764
incorrect 585
with errors 1349 (3.31%)
deleted 1237
corrected 113
entries remaining 321,977

after further decomposed 10,057
2 iterations total in GVD 39,570

total not in GVD 282,407
correct 39,562 (99.98%)
incorrect 8
deleted 2
corrected 6
entries remaining 321,975

after further decomposed 43
3 iterations in GVD 39,568

not in GVD 282,407
correct 39,568 (100%)
incorrect 0
entries remaining 321,975

Table 10.3: Evaluation statistics of three splitting iterations. Only the
splittings of compounds were checked that appeared in the GVD lexicon.

centage of correct splittings (precision) after the first splitting step, the
final conversion table is expected to have a high precision score as well.
With this table, newspaper text data can appropriately be decomposed so
that the effect on speech recognition performance can be investigated. But
to ensure that lexical coverages improve by splitting compound words with
the described splitting method, first the lexical coverages of vocabularies
derived from the original and decomposed text data were compared.
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10.3 Lexical coverage evaluation

In order to evaluate whether compound splitting improves lexical cover-
age, a relatively large text collection of well over 300M words of news-
paper data from January 1999 until December 2001 was used. From this
collection word frequency files were created, one based on the original text
version and one based on a version that was decomposed without applying
any restrictions. The word frequency file of the original text data contained
1,322K words, the one of the decomposed data 1,050K words. Hence, com-
pound splitting resulted in a 20% reduction in distinct words. Lexical cov-
erages of vocabularies, created by taking the top N words of both word
frequency files, were computed cumulatively, starting with taking only the
first word in the word frequency file (N = 1) and ending with taking all
words in the word frequency file (N > 1M). In this way, lexical coverage
statistics became available for every vocabulary size, so that improvements
(or deteriorations) in lexical coverage due to compound splitting could be
compared for any given lexicon size. Figure 10.1 shows the differences in
percentage lexical coverage of lexicons based on decomposed data relat-
ive to the ones based on the original data. Only lexicon sizes up to 100K
words are shown. The figure shows that compound splitting has a negative
effect on lexical coverage of very small vocabularies, a large positive effect
on lexical coverage up to a vocabulary size up to some 20K words and this
positive effect slowly decreases when larger vocabularies are used. After
100K, not shown in this figure, lexical coverages after compound splitting
remain higher but the differences decrease. In general, this result can be
interpreted as a confirmation of the hypothesis that lexical coverage of a
vocabulary improves when compound words are decomposed, with an ex-
ception for very small vocabularies. An explanation for this and for the slow
decrease in improvement with vocabularies larger then 20K word, can be
found by looking more closely at the lexical coverage function:

LC(w) =

Lsize∑
w=1

f(w)

N∑
w=1

f(w)
= L

N
(10.6)

where f(w) is the word frequency of word w in a development corpus, L
the lexicon, and N the total number of words. Firstly, although compound
splitting reduces the number of distinct words, it increases the total num-
ber of words as every decomposed compound word, is substituted for at
least two other words. The denominator of Equation 10.6, referred to as
total word mass (TM), will therefore be higher after compound splitting.
For very small vocabularies, the increased total word mass has a negative
effect on lexical coverage. With a growing vocabulary, it takes some time
to overcome this negative effect: a break-even is reached (at a vocabulary
size of 1415 words) at the point where the vocabulary has gained enough
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word frequency mass by incorporating words that are parts of frequent
compounds to undo the initial coverage loss. From that point onward, lex-
ical coverage improves as more and more compound words that could
originally not be covered have their parts contained in the vocabulary. A
maximum lexical coverage improvement is reached at a vocabulary size
of 20414 words: lexical coverage after compound splitting is at that point
0.75% higher (absolute) then before. With larger vocabularies, the lexical
coverage improvement slowly drops. Evidently, the effect on lexical cover-
age of adding one word to the vocabulary becomes smaller as the word fre-
quency list is descended: the frequencies of these words are lower so only
a few extra words are covered afterward. On top of that, the effect of com-
pound splitting also decreases as compounds have a lower word frequency
and less frequent constituents. Suppose that such a compound was not de-
composed, missing it in the vocabulary would have only a small effect on
lexical coverage anyway. With an increased total word mass, splitting such
compounds will subdue a lexical coverage improvement.

But as it is uncertain whether other dynamics have had a part in the
decrease in lexical coverage improvements, it seemed worthwhile to invest-
igate if compound splitting must be restricted to reach even higher lexical
coverages. In the next section possible compound splitting scenarios are
therefore looked at more closely.

10.4 Restricted compound splitting

Although compound splitting improves lexical coverage of lexicons larger
than some 1500 words, it may be advantageous not to decompound every
compound word that is encountered. The results described in the previ-
ous section suggests this and looking more closely at possible compound
splitting scenarios seems to confirm this hypothesis. In figure 10.2 these
(bipartite) compound splitting scenarios are shown. Both figures represent
a word list, the top area being the lexicon of a given size. The area below
the lexicon boundary (including the “buffer” which is the lexicon size plus
one) contains the words that are out-of-vocabulary. The figure on the left
represents those situations in which the compound word was in the lex-
icon (first global scenario). The figure on the right shows those situations
in which they are not (second global scenario). The arrows represent mi-
grations of constituents (words) in and out of the lexicon. For every global
scenario three local scenarios can be distinguished (marked A, B and C).
Figure 10.4 illustrates the actual distribution of compounds in the data. It
shows the number of compounds per 10K words in the numerically sor-
ted word frequency list. The largest number of compounds can clearly be
found outside the range of lexicons of realistic size.
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To compute the exact effect on lexical coverage of splitting a compound
in one of the scenarios depicted in Figure 10.2, every scenario was mod-
elled using the lexical coverage function (Equation 10.6). After compound
splitting an individual compound C, lexical coverage should be higher then
before compound splitting it. In other words, the ratio of the lexicon mass
after compound splitting (LMnew ) and total word mass after compound
splitting (TMnew ) should be higher then the lexical coverage before com-
pound splitting (LCold).

LMold

TMold
<

LMnew

TMnew
(10.7)

For every constituent migration scenario, the change in lexical coverage can
be computed with for every scenario its own equation. Below, these equa-
tions are listed. For simplicity, for every compound splitting it is assumed
that the compound is decomposed into two constituents α and β only.
Every equation produces a lexical coverage that can be compared with the
lexical coverage before compound splitting. In the equations, f(C) is the
frequency of the compound, f(b1,2) the frequency of the first two words
that are not in the lexicon (buffer), and f(Llast), f(Llast−1) the frequencies
of the last two words in the lexicon:

(1) When the compound is in the lexicon

(1A) and, both the α constituent and the β constituent are in the lex-
icon, it applies that the old lexical coverage should be smaller
than:

LMold − f(C)+ 2 · f(C)+ f(b1)
TMold − f(C)+ 2 · f(C) (10.8)

as the frequency of the compound is removed from the lexicon,
two times the frequency of the compound goes to the constitu-
ents in the lexicon and, as the compound is removed from the
lexicon, a word that previously was out of the lexicon (first entry
in the buffer: b1) can now enter the lexicon. The total amount of
words is changed also: for every compound splitting it applies
that the compound with a frequency f(C) is removed, instead,
the frequency of the two constituents increase.

(1B) when only one constituent (α in this equation) is in the lexicon,
it applies that the old lexical coverage should be smaller than:

LMold − f(C)+ 2 · f(C)+ f(β)
TMold − f(C)+ 2 · f(C) (10.9)

as the compound is removed, two times its frequency goes to the
constituents, one of which is the β constituent that enters the
lexicon.
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(1C) when neither the α constituent nor the β constituent are in the
lexicon, it applies that the old lexical coverage should be smaller
than:

LMold − f(C)+ 2 · f(C)+ f(α)+ f(β)− f(Llast)
TMold − f(C)+ 2 · f(C) (10.10)

as this time both constituents enter the lexicon, the last word in
the lexicon (Llast) is pushed out.

(2) when the compound is not in the lexicon

(2A) and, both the α constituent and β constituent are in the lexicon,
it applies that the old lexical coverage should be smaller than:

LMold + 2 · f(C)
TMold − f(C)+ 2 · f(C) (10.11)

as no word is removed from the lexicon but the compound con-
stituents are in the lexicon so they both “receive” the frequency
of the former compound.

(2B1) one constituent is not in the lexicon (α in this equation):

(2B1a) and this constituent reaches the lexicon after compound splitting
(α):

f(α)+ f(C) > f(b1) (10.12)

when the frequency of the compound is added to the frequency
of the constituent and the resulting frequency is larger than the
frequency of the first word not in the lexicon (b1), it applies that
the old lexical coverage should be smaller than:

LMold + 2 · f(C)+ f(α)− f(Llast)
TMold − f(C)+ 2 · f(C) (10.13)

as both constituents are in the lexicon, two times the compound
frequency is added. The α constituent was not in the lexicon be-
fore so its frequency must be added as well. The last item in the
lexicon is removed.

(2B1b) and the constituent does not reach the lexicon after compound
splitting (α):
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f(α)+ f(C) <= f(b1) (10.14)

when the sum of the frequencies of the compound and the con-
stituent is not enough to reach the lexicon, it applies that the old
lexical coverage should be smaller than:

LMold + f(C)
TMold − f(C)+ 2 · f(C) (10.15)

as only one constituent in the lexicon “receives” the compound
frequency.

(2C) neither the α constituent nor the β constituent is in the lexicon:

(2C1) and both α and β reach lexicon:

f(α)+ f(C) > f(b1)∧ f(β)+ f(C) > f(b1) (10.16)

when the added frequencies of constituent and compound are
large enough to let the constituents reach the lexicon, it applies
that the old lexical coverage should be smaller than:

LMold + 2 · f(C)+ f(α)+ f(β)− f(Llast)− f(Llast−1)
TMold − f(C)+ 2 · f(C) (10.17)

as both α and β constituent reach the lexicon the compound fre-
quency is added twice, along with the frequencies of the constitu-
ent but due to the entering of the constituents, the frequencies
of the last two words in the lexicon must be removed.

(2C2) only one constituent (α) reaches the lexicon:

f(α)+ f(C) > f(b1)∧ f(β)+ f(C) <= f(b1) (10.18)

when the added frequencies of constituent and compound are
large enough for only one constituents (α) to reach the lexicon,
it applies that the old lexical coverage should be smaller than:

LMold + f(C)+ f(α)− f(Llast)
TMold − f(C)+ 2 · f(C) (10.19)
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as only one constituent reaches the lexicon, the compound and
constituent frequency is only added once and one word has to be
removed from the lexicon.

(2C3) neither one of the constituents reaches the lexicon:

f(α)+ f(C) <= f(b1)∧ f(β)+ f(C) <= f(b1) (10.20)

when the added frequencies of constituent and compound are
not large enough for either constituents to reach the lexicon, it
applies that the old lexical coverage should be smaller than:

LMold

TMold − f(C)+ 2 · f(C) (10.21)

as nothing changes in the lexicon.

Using these equations the effect on lexical coverage of compound split-
ting can be computed for every word. It must however be noted that the
lexical coverages obtained using these equations is not entirely realistic.
Locally, compound splitting may result in a lower lexical coverage whereas
globally, compound splitting the particular compound may be beneficial.
Such a scenario occurs for instance when compounds that share the same
constituent(s) on their own do not improve coverage but taken together
they do. However, as evaluating compound splitting globally is complex
and computationally expensive (after every compound splitting the word
frequency list must be re-ordered), it was decided to do a local evaluation.
For this purpose, the word frequency file created out of the 1999-2001
newspaper data was used. First, the lexical coverage of a 65K vocabulary
before compound splitting was computed. Next, the word frequency list
was descended and when a compound word was detected, the lexical cov-
erage after compound splitting the compound was computed using one of
the equations above and compared with the lexical coverage of the 65K
vocabulary. All compounds were labelled with a scenario type and either
a “true” or “false” for a lexical coverage improvement and lexical coverage
deterioration respectively. All compounds marked with a “false” label were
then removed from the compound splitting conversion table to create a
restricted compound splitting table. If the local evidence that a particular
compound should not be decomposed for better lexical coverage results
is valid, a global compound splitting run as conducted in the beginning of
this section, this time with the restricted table instead, should yield better
results.

Local lexical coverage statistics were computed for 290K compounds in
the word frequency list having only two constituents. Only 33K received
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scenario number of “false” labels
1C 464
2C 2879

2C1 6
2C2 90
2C3 2783

Table 10.4: Scenarios (1C, 2C1, 2C2, 2C3) with the number of compound
splittings that did not yield a lexical coverage improvement according to
the equations.

a “false” label, meaning that compound splitting had a negative local ef-
fect on lexical coverage. Most of the “false” labels were received due to
scenario 2C: the compound is not in the lexicon and splitting pushes one
former lexicon word out of the lexicon (see Table 10.4). The compounds
with the “false” labels were removed from the compound splitting conver-
sion table and the resulting table was used to decompound the 1999-2001
newspaper text data. The decomposed text data was compiled into a word
frequency file that in turn was used to compute lexical coverages of vocab-
ularies cumulatively, starting with taking only the first word in the word
frequency file (N = 1) and ending with taking all words in the word fre-
quency file (N > 1M). The results were compared with the unrestricted
compound splitting version. In Figure 10.4 the differences in percentage
lexical coverage between restricted and unrestricted compound splitting
are plotted. The figure shows that lexical coverages are only slightly bet-
ter for smaller vocabularies and become worse with larger vocabularies,
although the difference is marginal. Given the small effect of this restric-
ted method based on compound splitting scenarios and the computational
effort that is needed for the creation of a compound exception list, it was
decided to abandon this approach.
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10.5 Speech recognition evaluation

10.5.1 Method

To investigate the effect of compound splitting on ASR performance, lan-
guage models with a 65K vocabulary (top 65K most frequent words) were
created based on different text versions of a Dutch newspaper collection
of more than 300M words. The original data set served as training data
for the baseline language model, a number of differently decomposed text
versions were used for the test language models. Compound splitting was
done:

1. using an unrestricted compound splitting procedure:

(a) treating the binding morpheme as a separate
constituent.

(b) attaching the binding morpheme to the preceding constituent
(Glue-S).

2. Using restricted compound splitting procedures. Compounds were
only decomposed if their frequency of occurrence was too low to be
included in top N most frequent words in the original data where N
was chosen to be 5K, 20K and 65K.

The restricted procedure was created to investigate whether excluding fre-
quent and probably well-modelled words could improve ASR performance
over an unrestricted compound splitting procedure. Tri-gram Witten-Bell
discounted backoff language models were created using a 65K vocabulary
of the most frequent words in the subsequent text data sets. Word pro-
nunciations were obtained using a background pronunciation lexicon and
a grapheme-to-phone conversion tool (see Chapter 4). As the grapheme-to-
phoneme conversion may produce incorrect transcriptions, the pronunci-
ation of words that were not included in all vocabularies (e.g., only occurred
in one vocabulary), were manually checked to avoid that language model
versions were put at a disadvantage as more words have to be produced by
the grapheme-to-phoneme conversion tool, hence may have more incorrect
word pronunciations.

The speech recognition system used acoustic models trained forward
and backward in time on broadcast news training data (TNO-BN corpus,
see Chapter 5. For the broadcast news transcription task, a collection of
18 Dutch broadcast news programs (NOS Acht uur journaal) recorded from
January–March 2002 were transcribed manually. Segments containing non-
speech or speech of a foreign language were excluded from the test data,
resulting in approximately 6.5 hours of Dutch speech (70K words).
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On comparing word error rates

The comparison of systems that apply compound splitting with systems
that do not, deserves special attention. As noted in Carter et al. (1996), WER
of systems applying compound splitting can be measured in two ways:

1. by taking the speech recognition hypothesis after compound splitting
and comparing this with a reference in which compounds are split as
well (split comparison),

2. by mapping the compound constituents in the speech recognition hy-
pothesis after compound splitting back to the original compounds,
and comparing this with the original reference (unsplit comparison).

One could argue that for a fair system comparison the total number of
words to be recognised correctly should be the same. In that case, the WER
computations for the respective systems should follow the same proced-
ure: when method [1] was chosen for WER computation of the system that
applied compound splitting (split system), also a split comparison had to
be performed for the system that did not apply compound splitting (un-
split system). This means in practice that compounds in the hypothesis
transcription of the unsplit system should be split afterward for a com-
parison with the split reference used in method [1]. Alternatively, method
[2] is applied for WER computation of both systems. However, as pointed
out by Carter et al., mapping compound constituents in the split system’s
hypothesis back to the original compounds, may introduce errors as this
method creates a compound for every sequence of words that in some con-
text could be compound. For example, the word sequence “modder smijten
(English: throwing mud)”, could in Dutch be a compound in “het modder-
smijten is begonnen (English: the mud-slinging has started)” or two words
in “hij begon met modder smijten (English: he started throwing mud)”.

Another problem with applying method [2] stems from the shortcom-
ings of the compound splitting procedure that was used. This table was
created on the basis of newspaper data that in some cases contains word
sequences that miss the required space, such as in “peilingenvoorspellen
(English: the polls predict)”, that should have been written as “peilingen
voorspellen”. When such flaws appeared frequently enough in the data,
they could well have been included in the compound splitting table, as
“peilingen” en “voorspellen” are valid Dutch words. Up until this point, this
was not recognised as being problematic as splitting such incorrect com-
pounds could be regarded as a welcome extra text correction step. However,
when applying method [2] the occurrence of these entries in the compound
splitting table introduces errors.

Given the errors that could be introduced when applying method [2], for
this experiment it was chosen to compare the unsplit system with the split
systems as follows:
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• by comparing WERs that were computed using method [1] for both
the split and unsplit systems.

• by comparing the WER of the split systems computed using method
[1] with the WER of the unsplit system computed using the original
unsplit reference.

The last comparison method (further referred to as method [3]) does not
actually provide a fair comparison in terms of speech recognition perform-
ance. It was however included as it can be argued that with this method
split systems and unsplit systems can better be compared from a language
processing point of view. This method was also regarded to be of primary
relevance in the study of Carter et al. (1996).

10.5.2 Results

'

&

$

%

OOV WER (split) WER (unsplit)
unsplit system:

baseline 65K 2.59 39.8% 39.5%

split systems:

unrestricted 65K 2.18 39.2%
unrestricted+glueS 65K 2.22 39.2%

restricted 65K 2.25 39.6%
restricted 20K 2.19 39.1%
restricted 5K 2.18 39.1%

Table 10.5: OOV rates and WER rates of an unsplit system and split sys-
tems: unrestricted refers to a compound splitting procedure that splits
all encountered compounds, restricted refers to procedures that split
compounds only when they do not occur in the top N words of a sorted
word frequency list. The “unrestricted-glueS” refers to the method that
attaches the binding morpheme “s” to the preceding constituent.

Table 10.5 lists the OOV rates and WER rates of the baseline, unsplit,
system and the various split systems using language models based on de-
composed text versions. It shows that the split systems all perform better
than the baseline. OOV rates drop with a maximum of almost 16% relative
(unrestricted 65K and restricted 5K). Using the split comparison (method
[1]), the highest performance gain of 1.8% relative was obtained using a re-
stricted compound splitting procedure (splitting only compounds that do
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not appear in the top 20K or 5K in the sorted word frequency list). Al-
though the OOV rate slightly increased, no effect on WER was observed for
the compound splitting procedure that attaches the binding morpheme “s”
to the preceding constituents.

10.5.3 Conclusion

The results demonstrate that using decomposed text data for language
model training improves the coverage of speech recognition vocabularies
and as a result of that, speech recognition performance, regardless of pos-
sible disturbing side-effects of compound splitting as mentioned in the in-
troductory section. No effects could be observed caused by a different treat-
ment of the binding morpheme “s”. The hypothesis that one should not
alter compounds that are highly frequent as they will probably have robust
n-gram probability estimates, was confirmed by the experiment. The res-
ults suggest that omitting compounds in the 0-20K word frequency range
is sufficient for optimal performance. Noteworthy is the fact that the WER
of the 20K restricted model equals the one of the 5K restricted model,
although its OOV rate is slightly worse. This may indicate that the negat-
ive effect of having more OOV words is neutralised by more robust n-gram
models. As the performance difference between the best performing lan-
guage model and the language models based on unrestricted compound
splitting was only marginal (1% absolute), the computationally less expens-
ive procedure of unrestricted compound splitting may be preferred in prac-
tice.

10.6 Summary and final conclusions

To investigate the effect of compound splitting on speech recognition per-
formance, a data-driven compound splitting algorithm was created that
used an alphabetically sorted word frequency file based on a large amount
of newspaper data. Although recall of the algorithm could not be com-
puted, it was explained that the design of the algorithm guarantees that
compound recall will at least be sufficiently high for the purpose of the ex-
periment. Precision of the algorithm, measured on the first iteration of the
algorithm and using a commercial dictionary with constituent boundary
labels, was 97,7%.

A first comparison between the original text version and a fully decom-
posed text version showed a 20% reduction in distinct words and a better
lexical coverage for lexicons derived from the decomposed data. Restrict-
ing the compound splitting procedure aiming at even better lexical cover-
age performance was investigated in detail by looking at the contribution
to the self-coverage of a 65K lexicon of individual decompositions. When
such individual decompositions did not improve lexical coverage by them-
selves, they were excluded from the list of compounds used for the actual
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decomposition of the text data. However, this procedure did not yield a
robust improvement of lexical coverage of lexicons.

In order to investigate the effect of compound splitting on speech recog-
nition performance, a number of language models were created. One was
based on the original text data (baseline) and the others were based on text
data that was decomposed in different ways: two using a full compound
splitting procedure without applying any restrictions, and three using a re-
stricted compound splitting procedure that only decomposed compounds
when they were not frequent enough to be included in a lexicon of size N,
were N was chosen to be 5K, 20K and 65K. For the unrestricted proced-
ure, two text versions were created: one that treated the binding morpheme
as a separate constituent and one that attached the binding morpheme to
the preceding constituent. The language models were evaluated in a broad-
cast news transcription task. The language models that were created using
the restricted compound splitting procedure, in which compounds in the
0-20K word frequency range were omitted, gave the best speech recogni-
tion performance. However, the performance difference with the language
models based on unrestricted compound splitting was only marginal (1%
absolute).

Although the research described in this chapter confirmed the hypo-
thesis that compound splitting can improve lexical coverage and speech
recognition performance for Dutch, some issues remain that deserve to be
looked into more closely. Firstly, for specific tasks, having available an ac-
curate reverse compound splitting procedure (that maps constituents back
to the original compounds as addressed in Section 10.5.1) may be crucial. In
a spoken document retrieval framework, reverse compound splitting is of
minor importance (see also the discussion in the introductory section), but
in a dictation task for example, it may be expected that a user of a speech
recognition system requires compounds to be reassembled automatically.
Applying reverse compound splitting in this research introduced a sub-
stantial amount of incorrect compounds. In order to improve this proced-
ure, the compound detection algorithm could be improved so that incorrect
compound mappings can be prevented. Alternatively, the compound split-
ting table can be post-processed to exclude entries that introduce incorrect
mappings.

A second issue for future research is the exact behaviour of compounds
and decomposed compounds in the language model. Given that WER im-
proved with increasing OOV rates using language models based on the re-
stricted splitting procedures, it was hypothesised that this procedure en-
ables the creation of more robust n-gram language models. However, this
research could not provide evidence for this hypothesis. It may therefore be
worthwhile to search for an experimental design that enables the investig-
ation of compound splitting on the language model level. Furthermore, the
effects of applying the opposite of compound splitting could be included in
this investigation: the combination of frequent orthographic word tuples,
referred to as multi-words, into single items in the recognition lexicon, as
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proposed for example by Gauvain et al. (1997).
In summary, it can be concluded that:

• when large text collections are available, a data-driven compound
splitting procedure is a simple but effective approach for the gen-
eration of a compound splitting table.

• compound splitting reduces the number of distinct words in a Dutch
text collection and enables the generation of vocabularies with a bet-
ter coverage compared to vocabularies generated from the original
data.

• the hypothesis that a restricted compound splitting procedure results
in additional lexical coverage improvements, could not be warranted.

• language models based on decomposed text data result in a small
but consistent Dutch speech recognition performance improvement
in comparison with standard language models.

• the best speech recognition performance was obtained when language
models were used that were based upon a restricted compound split-
ting procedure that only splits compounds that are relatively infre-
quent: the ones that do not occur in the 0-20K word frequency range.

• to enable a correct reverse compound splitting procedure, either ad-
apting the current compound detection algorithm or post-processing
the compound splitting table is required.

• to obtain a better understanding of the effect of compound splitting
on the robustness of n-gram language models, additional research is
required.
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Chapter 11

Speech recognition evaluation

The main focus in this chapter is on the language modelling part of the
speech recognition system. A number of language model creation proced-
ures are evaluated with regard to speech recognition performance in a full
scale broadcast news transcription task. As a number of issues from previous
chapters are involved in these evaluations, this chapter may also be viewed
as the final evaluation of the task of porting the ABBOT system to Dutch.

11.1 Introduction

In the previous chapters, a number of issues regarding the porting of the
English ABBOT system to Dutch were addressed, including the collection
of Dutch training data for acoustic modelling and language modelling, the
generation of Dutch word pronunciations, the training of Dutch acoustic
models, text normalisation for language modelling, language model vocab-
ulary selection and compound splitting. In this chapter, most of these is-
sues are brought together in a set of speech recognition evaluations that
primarily focus on the language modelling part of the speech recognition
system, but at the same time give an impression of their application and
effect in a full scale broadcast news transcription task as well. The evalu-
ations reported in this chapter may therefore also be viewed as the final
evaluation of the task of porting the ABBOT system to Dutch, that as such
provides an indication of the final performance of the system in a broad-
cast news transcription task as a result of the research described in this
thesis. The vocabulary selection strategy, proposed in Chapter 9, and com-
pound splitting (previous chapter) were however not evaluated again with
the experiments described here.

Language modelling for the broadcast news transcription tasks is well-
studied, especially for the English language. From the NIST/DARPA Broad-
cast News (Hub4) speech recognition benchmark tests (Pallett, 2002), ample
experience with language modelling in this domain was obtained. This ex-

183
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perience was reported in numerous papers—such as the special issue on
broadcast news speech recognition of Speech Communications1—that have
served as a guideline for the choice of language modelling techniques to be
investigated in this research. Given the available data, language modelling
tools, speech recognition architecture, and time, it was however not feas-
ible to study all promising or successful techniques. For example, although
increasing the length of the n-gram context to 4-grams or even 5-grams
is reported to reduce perplexity and word error rates (e.g., Sankar et al.,
2002), this could not be evaluated for Dutch as the available ABBOT de-
coders, CHRONOS (Robinson and Christie, 1998) and NOWAY (Renals and
Hochberg, 1999), are limited to the use of 3-gram language models2. The
creation of language models was merely studied pragmatically, aiming at
obtaining the best possible speech recognition performance for the task
domain, given the available resources and time, so that the speech recogni-
tion system could successfully be deployed in a spoken document retrieval
task. In addition and if appropriate, it was attempted to relate the results
of the experiments described in this chapter to the results reported in the
literature on language modelling in the context of broadcast news tran-
scription.

In Chapter 6, the basics of n-gram language modelling were already dis-
cussed as a reference for the following chapters. As for the issues that
are not specifically addressed in the evaluation section below—such as
smoothing techniques—the reader is referred to this chapter. In the next
section, first the general experimental set-up is described. Next, language
model procedures are described and evaluated chronologically: starting
from scratch by investigating a few general aspects of the procedure (base-
line experiments) and ending with the investigation of more sophisticated
techniques (data selection and mixture language models). In Section 11.5
the results are summarised and discussed both from a language modelling
and general speech recognition point of view.

11.2 Experimental setup

Text data

The normalised newspaper data from January 1999 until December 2001
served as main training corpus for the language models in the experiments.
Unless reported otherwise, no topic selection was applied, and all available
newspaper data was used for the generation of n-gram counts. For a num-
ber of experiments, the data set was augmented with the autocues data
from the same time period. Given that the test data was from 2002, it was

1Speech Communications, Volume 37, 2002
2The srilm-enhanced version of the NOWAY decoder, developed at ICSI by Chuck Wooters,

can also use 4-gram models
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chosen not to use recent data (2002 onward) to simulate an speech recogni-
tion!online recognition task, for which evidently no future data is available,
as opposed to a retrospective recognition task, that is performed after all
data is recorded and allows for the use of future data to optimise the lan-
guage models (Auzanne et al., 2000). The text data collection was described
in detail in Chapter 7, the normalization procedure in Chapter 8.

Test data

A set of 10 broadcast news shows from January–March 2002 were tran-
scribed manually on the word level and also manually segmented in sec-
tions and sentences. The sections correspond with the individual topics
in the news shows and every section consist of a varying number of sen-
tences. The topic segmentation was only significant in a few experiments.
Segments containing non-speech or speech of a foreign language were ex-
cluded from the test data. In total, the test data contained approximately 3
hours of Dutch speech (35K words, on average 257 words per section).

Word pronunciations

The pronunciations of the vocabulary words were obtained by consulting
the GVD background pronunciation lexicon of 1.3M words. If the back-
ground lexicon could not provide a transcription, the pronunciation was
generated automatically by the GVD grapheme-to-phone converter (G2P).
As for 65K vocabularies on average 25% of the word pronunciations had
to be produced by the G2P tool, it was not feasible to check these manually.
In Chapter 4 the specifications of the background lexicon and G2P tool can
be found.

Acoustic modelling

The speech recognition set-up used acoustic models trained forward and
backward in time on broadcast news training data of 2000 (TNO-BN, 256
state units) as described in Chapter 5.

Assessment

A number of scoring statistics were evaluated in the language model exper-
iments:

1. word error rate (WER) and mean story word error rate (MSWER)

Speech recognition performance was measured by computing the
overall word error rate (WER) and the mean of the word error rate
per section (MSWER), which is referred to as “mean story word er-
ror rate”. The sections in the broadcast news material can each be
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viewed as a separate “story” or document. In spoken document re-
trieval evaluations it is customary to provide WERs per story, in order
to relate retrieval performances per query to recognition performance
of the retrieved documents. Moreover, the MSWER is a more realistic
measure for unbalanced test material as (very) low performances on
specific acoustic conditions are given less weight.

2. perplexity (PP)

In order to relate speech recognition performance to language model
performance, the perplexities of the respective LMs were computed
using the reference transcripts of the 10 broadcast news shows in the
test collection containing 35K words. During LM development one
does usually not measure perplexity on the test data itself in order to
prevent that the speech recognition results are biased. In this evalu-
ation the given perplexities only provide a measure to relate speech
recognition performance to LM performance. During the actual LM de-
velopment, perplexities were obtained using another set of broadcast
news transcriptions from the year 2000 (BN2000test).

3. out-of-vocabulary rate (OOV)

As was extensively discussed in earlier chapters, the out-of-vocabulary
rate (OOV) of the speech recognition dictionary is to a large extent de-
terminant for speech recognition performance. Therefore, the actual
OOV rate of the recognition dictionary on the test data is reported
where appropriate.

4. G2P contribution (G2P)

In Chapter 4 it was noted that word pronunciation errors may be in-
troduced when a G2P tool is used for the generation of word pronun-
ciations. When the speech recognition dictionary is changed in the
evaluations, therefore also the contribution of the G2P to the word
pronunciation generation process is given.

5. language model size (LMsize)

The size of a language model can be significant, especially for on-
line recognition tasks, as it influences memory usage and computa-
tion time. In specific cases, a smaller size LM that performs slightly
worse, may be preferred over a larger LM. To provide an indication of
language model size differences given specific LM configurations, the
size of the (compressed ARPA format3) LM is provided if appropriate.

3The ARPA-standard language model format was introduced by Doug Paul and is com-
monly used in speech recognition research
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Software

As creating language models using large amounts of data and state-of-the-
art LM algorithms puts high demands on a software implementation, ex-
isting language modelling software was used for this research. Two soft-
ware packages for language model training can be freely obtained and are
widely used in the speech recognition research community: the Cambridge-
CMU language modelling toolkit (CCLM) (Clarkson and Rosenfeld, 1997)
and the SRI language modeling toolkit (SRILM) (Stolcke, 2002) (see Ap-
pendix C.2 for a short description of the toolkits). Although each package
has its advantages and shortcomings—CCLM for example is more efficient
in memory usage, whereas SRILM provides better interpolation options—
all language models in this experiment were created using the SRI language
model toolkit for compatibility reasons. The choice for a single toolkit im-
plies that the language model procedures that are investigated here are to
some extent limited to the options that are provided by the toolkit, which
especially applies for the discounting schemes. SRILM does not support
the Jelinek-Mercer type of deleted interpolation or maximum entropy mod-
elling, so only Katz back-off smoothing was applied.

With the NOWAY decoder the ARPA-format produced by the language
model toolkit was converted to the binary format required by the CHRONOS
decoder, that was actually used for word decoding (see also Section 3.3.4).
Scoring of the speech recognition hypotheses was done using the sclite
scoring software described in Appendix C.2.

Information retrieval techniques

For some of the language model creation procedures, information retrieval
(IR) techniques were deployed using the Okapi tfidf term weighting scheme
according to Robertson et al. (1998):

∑
T∈Q

w
(k1 + 1)
K + tf

(k3 + 1)qtf
k3 + qtf

+ k2 · |Q| · avdl − dl
avdl + dl

(11.1)

whereQ is a query containing terms T ,w is the Robertons/Spärck Jones
weight (Robertson and Spärck-Jones, 1976) of T in Q:

w = log
(r + 0.5)/(R − r + 0.5)

(n− r + 0.5)/(N −n− R + r + 0.5) (11.2)

N, number of items in the document collection
n, number of documents containing the term
R, number of documents known to be relevant to a specific topic
r , number of relevant documents containing the term
S, number of documents known to be non-relevant to a topic
s, number of non-relevant documents containing the term
K is k1((1− b)+ b · dl/avdl).
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The values chosen for the parameters k1,b, k2 and k3 depend on the nature
of the queries and on the data collection. For the research described in this
thesis, the following parameter settings were chosen:

k1 = 1.2
b = 0.75
k2 = 0
k3 = 1000

With k2 = 0, equation 11.1 can be written as:

∑
T∈Q

w
(k1 + 1)tf
K + tf

(k3 + 1)qtf
k3 + qtf

(11.3)

11.3 Baseline experiments

In this section, the results of a number of experiments are reported that
investigate general aspects of the language modelling procedure, includ-
ing vocabulary size, n-gram cutoffs and smoothing techniques. The goal
of conducting these experiments was to arrive at the most optimal baseline
settings for language modelling in the Dutch broadcast news domain, given
the available resources.

11.3.1 Vocabulary size

In Chapter 9 the speech recognition vocabulary was studied from an out-
of-vocabulary rate perspective. Vocabulary size was regarded as a constant
that is limited to 65K words given the available decoders. The focus in
that chapter was on making the best possible selection of words given this
vocabulary size limit. However, it was also briefly mentioned that acous-
tic confusability becomes more probable with larger vocabularies as the
number of words that differ only in a few phones grows. Rosenfeld (1995)
estimated that the optimal vocabulary size for large vocabulary tasks to be
roughly between 55K and 110K words.

In order to investigate the effect of growing vocabularies on speech re-
cognition performance in a Dutch broadcast news transcription task as a
function of vocabulary size, five language models were created that only
differed in the size of the vocabularies that were used: 5K, 10K, 20K, 40K
and 65K words. A standard Katz back-off language modelling procedure
was performed, using Good-Turing (gt) discounting with lower exclusion
cutoffs for the bigrams and trigrams with counts of 2 (lower counts are
discounted to 0) and lower and upper discounting cutoffs for all n-grams
with counts larger then 7.



11.3. BASELINE EXPERIMENTS 189

'

&

$

%

Vocab LM size PP OOV WER MSWER G2P
5K 54 87 12.89% 50.2% 50.9% 0%
10K 73 114 8.02% 44.5% 43.9% 1.52%
20K 91 135 5.13% 40.7% 39.2% 8.04%
40K 107 155 3.00% 38.0% 36.2% 15.98%
65K 116 149 2.05% 37.1% 35.0% 23.23%

Table 11.1: Language model size, perplexity, OOV rate, word error rates
and G2P contribution as a function of language model vocabulary size.

Results

Table 11.1 shows the statistics for the vocabulary size runs. As expected,
the larger vocabularies reduce the number of OOV words from almost 13%
for the 5K vocabulary to some 2% for the 65K vocabulary. The decreas-
ing OOV rate results in an improved speech recognition performance, in
spite of the increased acoustic confusability and the growing amount of
less reliable pronunciations produced by the G2P. The results, visually de-
picted in Figure 11.1, show an almost a linear relationship between OOV
rate and overall word error rate with almost an equal word error reduction
with every percent OOV reduction.

11.3.2 Cutoffs

N-grams that occur only once in the training data (singletons) are regarded
as unreliable and are usually excluded from the language model by setting
a cutoff variable. Especially when the amount of training data is large, one
could argue that n-grams that occur twice are almost as unreliable as those
that occur once and that therefore only n-grams with a minimum count of
3 should be included in the language model. The cutoff parameter can also
be used to reduce the size of the language model by excluding less reliable
n-grams.

In this experiment a number of bigram and trigram cutoff-settings are
tested on 65K Good-Turing discounted Katz back-off language models: ex-
cluding singletons, and excluding n-gram with counts of respectively 2 (the
65K run from the previous experiment), 3 and 5.

Results

In Table 11.2 the results of the respective language models are listed. Note
that the OOV rate and G2P contribution were equal to the statistics for
the 65K vocabulary given in Table 11.1. The results show that although
removing singletons only (cutoffs of 1) gives the best performance, using
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Figure 11.1: OOV rate, WER and MSWER as a function of vocabulary size

an n-gram cutoff of 2 is regarded as the best choice as this gives a LM
that is 75% smaller, has a better perplexity measure and hardly shows any
performance degradation.
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%

2/3-gram cutoffs LM size PP WER MSWER

1 414 161 37.1% 34.9%
2 116 149 37.1% 35.0%
3 86 172 37.5% 35.5%
5 39 183 37.8% 35.9%

Table 11.2: Language model size, perplexity and word error rate as a
function of n-gram cutoffs.

11.3.3 Smoothing methods

Many techniques have been proposed for n-gram smoothing and some
widely used techniques were described in Section 6.3. In Chen and Good-
man (1998) a number of smoothing techniques are compared as a func-
tion of data size, corpus, cutoffs and n-gram order, as these variables have
shown to be significant for the performance of the smoothing techniques.
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Also, the effect on speech recognition performance of the smoothing al-
gorithms was investigated: better smoothing algorithms were reported to
yield up to a 1% absolute difference in word error rate. Although it does
not seem a major improvement, one must consider that in order to im-
prove general speech recognition performance, every small improvement
that could be obtained anywhere in the process should be gathered.

Chen and Goodman found that (modified) Kneser-Ney smoothing con-
sistently outperforms other smoothing algorithms over all training set sizes
and corpora. Kneser-Ney smoothing (kn) was therefore an obvious first
choice for this experiment. In the same study, it was reported that absolute
discounting and Witten-bell discounting methods have a very low perform-
ance on small data sets, but yield better results for very large data sets. As
the available Dutch training data of 300M words in the terminology of the
Chen and Goodman study may be regarded as very large (comparable to
the 10M sentences with on average 21 words per sentence of the WSJ/NAB
corpus in Chen and Goodman (1998)), also Witten-bell discounting (wb) and
absolute discounting (abs) were chosen for this experiment. As a reference
discounting method, the default discounting scheme provided by the SRI
language modelling toolkit and used in the previous experiments, Good-
Turing discounting (gt), was chosen.

SRILM provides a special feature to create interpolated backoff models
that are reported to yield slightly better results than the standard mod-
els (Stolcke, 2002). As this feature could easily be implemented, for every
language model also a interpolated version (ipl) was created except for the
one that applies Good-Turing discounting as interpolation is not supported
here. All language models used Katz backoff for smoothing, n-gram cutoffs
of 2 and the same 65K vocabulary as used in the previous runs.

Results

Table 11.3 shows the perplexities and word error rates of the different dis-
counting methods. Although Good-Turing discounting has the best overall
perplexity, Kneser-Ney discounting with interpolation gives the best speech
recognition performance with the lowest MSWER of 34.6%. However, the
differences between the discounting schemes are marginal: the highest and
lowest MSWER differ only 0.4% absolute which is less than the 1% absolute
difference that was hoped for. In spite of that, Kneser-Ney discounting with
interpolation was regarded as the best discounting method in the current
experimental setup and used as such in the following experiments.

11.3.4 N-gram pruning

In Sankar et al. (2002) and Stolcke (1998), a method for reducing the lan-
guage model size is reported that prunes n-grams based on the minimal
distance (relative entropy) between the probability distribution of the ori-
ginal model and the distribution of a prunedmodel: alln-grams that change
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Discounting method PP WER MSWER

kn+ipl 159 36.9% 34.6%
abs 161 36.9% 34.9%
abs+ipl 161 36.9% 34.9%
wb+ipl 160 37.0% 34.8%
wb 164 37.1% 34.9%
gt 149 37.1% 35.0%
kn 168 37.3% 34.9%

Table 11.3: Language model perplexity and word error rates as a func-
tion of smoothing techniques with (ipl) and without interpolation ap-
proximation.

the perplexity of the pruned model by less than a threshold are removed.
Although a language model size of around the 100Mb, as in these experi-
ments, is not problematic, augmenting the training data set may lead to LM
sizes that are impractical. Therefore, the effect of this pruning method was
investigated on the Kneser-Ney discounted language model of the previous
experiment, using a pruning thresholds of 10−7, 10−8 and 10−9, the same
threshold as were tested in Sankar et al. (2002).

Results

The results of the pruning evaluations are shown in Table 11.4 that lists
the language model size, the number of bigrams and trigrams, perplexity
and word error rates as a function of the pruning threshold. It shows that
delicate pruning, using a threshold of 10−9, reduces the number of n-grams
and the size of the language model substantially, with only minor perform-
ance degradation (0.1% absolute). Comparing these results with those re-
ported in Sankar et al. (2002) however, shows that pruning in this experi-
ment is less effective: even a moderate pruning with a threshold of 10−8 did
not lower recognition performance in the study of Sankar et al., whereas
in this experiment the performance degradation is substantial. It must be
noted however that in Sankar et al. (2002) 4-grams instead of 3-grams were
evaluated.

11.3.5 Conclusions

The goal of the experiments described hitherto was to investigate the op-
timal baseline settings for LM creation in the context of Dutch broadcast
news transcription tasks, given a variety of LM properties proposed in the
literature. It was shown that in line with the results obtained for languages
as English, increasing vocabulary size up to a maximum of 65K words is
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Thresh LMs #bigrams #trigrams PP WER MSWER
no prun 112 6,226,759 16,576,907 159 36.9% 34.6%
10−9 94 5,715,941 12,866,842 161 37.0% 34.7%
10−8 56 4,410,050 5,681,035 170 37.5% 35.2%
10−7 16 1,395,331 999,948 210 39.8% 38.0%

Table 11.4: Language model size, number of bigrams and trigrams, per-
plexity and word error rate as a function of n-gram pruning.

beneficial and improves Dutch speech recognition performance, in spite of
the fact that acoustic confusability increases as well. The outcome of the
vocabulary experiment suggest that the most appropriate vocabulary size
for a Dutch broadcast news transcription task, is at least larger than the
40K–60K range estimated by Seymore et al. (1997) in a comparable task
for English. Most likely this is the result of the larger lexical variability of
Dutch compared to English. As the maximum vocabulary size of the AB-
BOT system was limited to 65K words, speech recognition performance as
a function of even larger vocabularies, could not be tested.

The experiments that addressed the optimal cutoff-settings showed
comparable results as can be found in the language modelling literature:
the larger the cutoff-settings, the smaller the language models become, at
the cost of speech recognition performance. Neglecting all n-grams with a
frequency of 2 was in this research regarded as the most optimal choice.
Although speech recognition performance dropped slightly, the LM was
75% smaller and had a better perplexity than the model that only removed
singletons (cutoff of 1). Applying n-gram pruning in order to obtain even
smaller LMs without sacrificing too much in performance, was reasonable
successful. Using a delicate pruning scheme reduced the size of the LM sub-
stantially at the cost of only a minor loss in performance. In line with the
findings for English of Chen and Goodman (1998), Kneser-Ney smoothing
with interpolation reached at the highest speech recognition performance
in the experiment, although the difference with other smoothing methods
was only marginal.
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11.4 Data selection and language model adaptation

Up until this point, all available newspaper data was used for the creation
of language models. However, some newspaper articles have only little in
common with the content in the broadcast news domain. Articles about
chess, cooking recipes and the television guide are evident examples of off-
domain text data that possibly introduce an uncertain amount of noise in
the language models. Although the n-grams encountered in such articles
may be valid Dutch n-grams, they may well be improbable in a broadcast
news context (as for example in “he lost his queen”). Therefore, it was in-
vestigated whether the topic and category labels of the newspaper corpus
(e.g., “sports”, “economics”, see also Section 7.2) could be deployed to ex-
clude the less representative text data from the language model creation
procedure. Therefore, in a supervised classification procedure, a finite set
of broad text clusters such as “foreign affairs”, “politics”, “disasters” and
“health” was created on the basis of a much broader set of topic labels.

In a first experiment, sets of clusters were selected that intuitively
seemed the most appropriate clusters for the broadcast news domain for
language model training. However, none of the cluster selections could im-
prove the perplexity that was obtained using the full data set: the best
performing selection resulted in a perplexity of 173, whereas the full data
set reached at a perplexity of 159. In a second experiment, an initial lan-
guage model was created by starting with a single cluster as training data.
In the following steps, a new cluster was added to the training data and
a new language model was created. If the newly created language model
gave a lower perplexity on a set of broadcast news transcripts of the year
2000 (BN2000test) than the previously created LM, the added cluster was
marked as “useful”. Eventually, all useful clusters were taken together for
the generation of a single language model. However, the language model
that was trained on the full data set still gave the lowest perplexity. Ap-
parently, given the available amounts of training data, data quantity (the
more data the better) is still more important than data quality (selecting
the most appropriate data) in language model estimation. Another explan-
ation might be that the quality of the selected data was not yet high enough
to allow for language model improvements.

Deploying mixtures of language models, for example a mixture of a do-
main specific language model based on a small amount of domain specific
data and a general model based on the full data set, is often proposed
to avoid problems of data sparsity in the context of data selection for lan-
guage modeling (e.g. Clarkson and Robinson, 1997; Gotoh and Renals, 2000;
Seymore and Rosenfeld, 1997). The next sections report the results of the
creation of a number of mixture language models. First, the autocues data
are exploited to create better language models for the broadcast news do-
main. The autocues data can be a valuable source for language modeling
in the broadcast news domain as this data perfectly matches the news-
reader’s parts in the broadcast news shows (see Chapter 7). Next, experi-
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ments that investigate the use of information retrieval techniques for the
selection of domain specific data in a mixture language model approach are
described.

11.4.1 Incorporating autocues data

Two approaches were investigated to incorporate the autocues data into the
language modeling procedure. In the first approach, the autocues data was
simply added to the total newspaper training collection. Next, a language
model (backoff interpolated Kneser-Ney LM) was created on the basis of
the complete data set. In a second approach, two separate language models
were created. One on the basis of the newspaper data and the other on
the basis of the autocues data. Next, both language models were linearly
interpolated (Clarkson and Robinson, 1997) to generate a mixture language
model. The mixture-weight (λ) was estimated using the text transcripts of
the five broadcast news shows of the BN2000test set.

Results
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Configuration PP WER MSWER
kn-ipl 159 36.9% 34.6%

news+acues 154 36.7% 33.8%
mixlm-news+acues 147 36.4% 33.9%

Table 11.5: Perplexity and word error rates of a baseline LM based
on newspaper data only (kn-ipl), a LM based on newspaper data plus
autocues data (news+acues), and a mixture language model, created by
interpolating a newspaper LM with a autocues LM.

The results in Table 11.5 show that adding domain specific data im-
proves both perplexity and speech recognition performance compared to
the baseline (kn-ipl). However, the best perplexity and best overall speech
recognition performance is obtained when the domain specific language
model is interpolated with a specific language model (mixlm-news+acues).

11.4.2 Topic based language models

An alternative approach to the data selection methods based on topic or
category labels described earlier, is the use of information retrieval tech-
niques to find the most appropriate selection of training data for a certain
domain. Many of such approaches have been investigated, including topic
detection using topic clustering and a topic classifier based on a model of
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word co-occurrence (e.g., Sekine and Grisham, 1995; Seymore and Rosen-
feld, 1997), and latent semantic analysis (LSA, Bellegarda, 2000).

In this research, a straightforward but computationally expensive pro-
cedure was implemented as a first approach to the creation of topic based
language models using IR techniques. Given the somewhat disappointing
results of the clustering approach described above, the newspaper data
collection was regarded as an unstructured set of documents, each hav-
ing a particular topic that may or may not resemble a topic in a specific
section in a broadcast news show. To find those documents in the newspa-
per collection that resemble a topic in a particular broadcast news section,
first a preliminary word transcription of the broadcast news section was
created using a baseline speech recognition configuration (it was assumed
that section boundaries in broadcast news shows were known). Next, this
word transcription was used as a query in an IR system in order to gener-
ate a ranked list of newspaper documents that match the query. This list
of documents was then used to generate a topic based vocabulary and lan-
guage model. In a second recognition run the final word transcription was
generated. This procedure is visually depicted in Figure 11.2.

The IR system uses Okapi term weighting as described in Section 2.2 and
a stop list. A number of experiments were performed to find the optimal
settings. To investigate the effect of speech recognition errors of the ini-
tial ASR run (query) on retrieval and final speech recognition performance,
three query conditions were distinguished:

• one based upon a perfect speech recognition output by taking the
reference transcript as input for the query,

• one based upon a relatively good speech recognition performance by
taking the output of a speech recognizer using a 65K vocabulary and
a Kneser-Ney backoff LM from earlier experiments (WER of 36.9%, see
the experiments on smoothing techniques above),

• and one based upon a relatively bad speech recognition performance
by taking the output of a speech recognizer using a 5K vocabulary
and Good-Turing discounting (WER of 50,2%, see the experiments on
vocabulary size above).

Next to the query conditions, three conditions were created on the basis of
the number of relevant documents that were used for topic based LM cre-
ation: 3K, 5K and 10K documents. As on average a document contained
350 words, the language models were based on some 1M , 1.75M and 3.5M
words respectively. Given the discussion on data sparsity above, best res-
ults should be obtained using as many relevant documents as possible.

All vocabularies were created on the basis of the relevant documents
that were used for LM creation by selecting all words with a minimum count
of two from these documents. As the total number of distinct words in
these documents was relatively small, none of these vocabularies reached
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Figure 11.2: Creation of topic based LM: the word transcript of an initial
decoding step using a recognition system with a baseline LM are used
to generate a query. Given the query, the IR system produces a set of
relevant documents that are used for creating the topic specific LM. In a
second recognition run the final word transcript is generated.
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the maximum of 65K number of words. To investigate whether using all
available vocabulary space could improve performance, a special condition
was created: words from the 65K vocabulary used in previous experiments
that were not yet included in the topic LM vocabularies were added up to a
vocabulary size of 65K words, the most frequent words first.

Finally, a mixture topic LM condition was created that used the top
3K most relevant documents for topic based LM creation. This topic LM
was then interpolated with a general model based on newspaper data and
autocues data (comparable with the mixlm-news+acues model of the pre-
vious experiment). This general model was based on a 40K vocabulary in
order to prevent that the vocabulary of the mixture LM could exceed the
maximum vocabulary space of 65K.

Results

'
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%

LM WER MSWER Dct G2P

mixlm-news+acues 36.4% 33.9% 65,000

irlm-top3K-bad 37.8% 35.0% 26,566 15.61%
irlm-top3K-base-65K 36.9% 33.3% 65,000 25.46%
irlm-top3K-base 36.9% 33.2% 25,464 15.33%
irlm-top5K-base 36.5% 33.0% 36,305 18.91%
irlm-top10K-base 36.2% 32.7% 56,360 24.21%
irlm-top3K-ref 36.1% 31.5% 25,112 15.10%
irlm-top3K-news+acues 35.3% 32.5% 40,730 16.73%

Table 11.6: Word error rates, average dictionary size and average G2P
contribution as a function the different configurations applied for the
creation of LMs using IR.

The results are listed in Table 11.6. As a reference the results of the
mixture LM based on newspaper and autocues data are provided (mixlm-
news+acues). Using a baseline speech recognition configuration for the first
decoding pass and selecting the top 3K documents for LM generation (irlm-
top3K-base) already gave a speech recognition performance in the second
pass that resembled the performance of the mixture LM, although the av-
erage dictionary size was substantially smaller (25K instead of 65K). Us-
ing a perfect speech recognition transcripts for querying (irlm-top3K-ref)
even outperformed the mixture LM, whereas using an errorful transcript,
represented by a LM with a small vocabulary (irlm-top3K-bad), worsened
performance. The results of the irlm-top3K-base-65 run show that medium
size dictionaries of the IR language models represented the words in the
news sections well. Speech recognition performance did not improve when
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the 25K dictionaries were enlarged so that they could cover the maximum
number of 65K words in this run. As expected, enlarging the number of
ranked documents that were selected for the training of the IR language
models, in order to minimize the data sparsity problem for LM training,
did have a positive effect on ASR performance. Extending this approach by
creating language models based on a mixture of a topic specific LM and
a general LM (irlm-top3K-news+acues), finally gave the best results, show-
ing some 4% relative gain in MSWER with respect to a general mixture LM
(mixlm-news+acues) that was not adapted to individual topics.

11.4.3 Using improved acoustic models

In a final speech recognition evaluation, the best performing standard LM
(Kneser-Ney discounting with interpolation) and mixture LM (topic based
mixture LM) were evaluated once again, this time using an improved acous-
tic model that uses a large recurrent neural net: 1024 hidden units in-
stead of 256 units as in the previous experiment (see also section 5.6.4). In
Table 11.7 the results of this evaluation are listed pairwise: first the scores
obtained earlier using the small RNN, next the scores that result from using
the large RNN.
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%

LM hidden units WER MSWER
kn-ipl 256 36.9% 34.6%
kn-ipl 1024 32.9% 30.9%
irlm-3K-news+acues 256 35.3% 32.5%
irlm-3K-news+acues 1024 31.7% 29.0%

Table 11.7: Comparison of word error rates given two LM configurations
and an acoustic model using a small RNN of 256 hidden units and one
using a large RNN of 1024 units.

11.4.4 Discussion and conclusions

The experiments described in this section aimed at improving language
model performance by focusing on the content of the training data (data
quality). Selecting the most appropriate data for the BN task domain in
general using the available category labels in the data collection was not
successful. Neither removing category clusters from the training data that
intuitively did not seem appropriate for the task domain, nor selecting only
those clusters that showed an improved perplexity with regard to some do-
main specific test data when added to the training set, outperformed the
approach that simply used all available training data for LM training. It
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was suggested that data quantity dominates data quality, either because
the selected data portions in the clusters are too small for robust LM train-
ing, or because the selected data is simply not specific enough to train
more robust n-grams conditioned on the task domain. However, the res-
ults of the experiments on topic based language modeling (Section 11.4.2)
showed that a relatively small amount of training data can be sufficient
for LM training provided that the training data closely matches the data in
the task domain: using only some 1.75M words of domain specific training
data for the creation of topic LMs (irlm-top5K-base), results in a compar-
able speech recognition performance as was obtained using the full training
data set. However, as will be addressed in more detail below, the signific-
ant difference between vocabularies in the respective methods, does not
warrant any strong conclusions regarding data quality given these exper-
imental results. Nevertheless, applying a less ad hoc clustering approach,
for example by using automatic clustering procedures as proposed in Go-
toh and Renals (2000) or Seymore and Rosenfeld (1997) may result in more
appropriate clustering decisions as obtained using the approach described
here, thereby allowing for the training of better language models for the BN
task domain in general.

An attempt to improve language model performance by deploying a re-
latively small amount of data that closely matches the general properties
of the task domain, autocues data, was successful. Best results were ob-
tained by applying a mixture framework that merges a general LM trained
using a large amount of data with the domain specific LM. These results
prove the virtue of having at least some training data available that closely
matches the target domain. In practice, it is often not feasible to collect
large amounts of data of a certain task domain, as this usually requires the
manual generation of transcripts. By applying a mixture framework a large
domain mismatch can at least be reduced to some extent.

Applying a mixture LM framework along with a careful selection of train-
ing data for a restricted domain that preferably covers one certain topic,
can further improve language model performance as was shown in the ex-
periments conducted in section 11.4.2. By using transcripts of an initial
speech recognition run as query representation for searching related docu-
ments in the data collection for LM training, a topic specific component LM
could be constructed that in a mixture framework gave the lowest speech
recognition error rates. However, narrowing down the focus domain to the
topic of a broadcast news item was enabled by deploying the manually
generated topic boundaries. It must be noted that in practice such topic
boundaries must be generated automatically which significantly complic-
ates the procedure. Moreover, using a dual pass recognition strategy, one
pass for query generation and one for generating the final transcript, and
creating both the topic LM and the final mixture LM online, slows down pro-
cessing time considerably. The experiments show that at the cost of some
performance degradation a simple speech recognition configuration could
be deployed that takes less time for processing (irlm-top3K-bad). Also us-
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ing a smaller set of documents for topic LM training quickens the LM gen-
eration procedure, again at the cost of some performance. Alternatively, a
dual pass strategy can be replaced by an updating strategy that periodic-
ally adapts the active language model to the current topic making use of
the recognition history. This history in a certain time window could then
serve as query representation in a comparable scheme as used in the exper-
iments described here and the active language model can be replaced by a
better matching LM given the recognition history. Such an approach is evid-
ently less suitable when topics frequently change as in the broadcast news
domain: the active LM may in practice often be behind the current topic.
However, in task domains were topics are less fragmented, such as in doc-
umentaries, an LM updating scheme may be preferred. Ideally, the effect
of applying such a scheme will be that the LM becomes more appropriate
when progressing through the data.

One could argue that applying a language model adaptation as was done
in this research, actually is more a vocabulary adaptation scheme than a
language model adaptation scheme. Although vocabulary selection can be
viewed as part of the language modeling procedure, they can equally be
viewed as separate processes: one focusing on selecting the most appropri-
ate words given the task domain in order to minimize the out-of-vocabulary
rate, the other focusing on capturing the n-gram statistics that are relevant
for the task domain in order to obtain accurate word probability estimates
given input from the task domain. It is questionable whether the perform-
ance improvements obtained in the described experiments are due to im-
proved n-gram statistics. Disturbing effects of improbable n-grams given
the task domain, such as in the example of “the horse captures the queen”,
may indeed occur when language model training data is not adapted to the
content of the task domain, but it may be expected that such an effect is
small.

11.5 Summary and conclusion

In this chapter, the subjects discussed in the speech recognition part of
this thesis were brought together in a number of speech recognition evalu-
ations. The primary goal was to investigate language modeling in a broad-
cast news transcription task and a number of language modeling configur-
ations were evaluated.

An optimal baseline trigram language model was obtained in terms of
performance and size for the Dutch broadcast news domain, given a sub-
stantial newspaper training collection of a few hundreds of millions of
words, using the following configuration:

• a vocabulary of the 65K most frequent words in the training corpus,

• n-gram cutoffs of 2
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• Kneser-Ney discounting with interpolation

• and optionally, n-gram pruning with a threshold of 10−9

Attempts to improve the performance of the baseline model focused on
data selection and language model merging. It was concluded that:

• the available category labels in the corpus could not successfully be
deployed for the improvement of the baseline models. It was sug-
gested to use an automatic clustering procedure as proposed in for
example Gotoh and Renals (2000) or Seymore and Rosenfeld (1997) to
generate more appropriate clustering decisions for the generation of
language models that better suit the task domain.

• using a relatively small amount of autocues data, closely matching the
general properties of the task domain, improved speech recognition
performance. Best results were obtained in a mixture LM framework,
that merges a general LM trained using a large amount of data with a
domain specific LM.

• extending the mixture approach by generating mixtures of general
language models and topic specific language models, created using IR
techniques, was the most successful language model creation proced-
ure tested.



Chapter 12

Speech recognition:
Summary and future work

The research and development steps undertaken to reach at a Dutch large
vocabulary speech recognition system suitable for application in a spoken
document retrieval environment are summarised in this chapter. On the
basis of this work, a number of research issues in large vocabulary speech
recognition for Dutch, given both the ABBOT system and systems general,
and given both the broadcast news domain and other domains, are defined.

Speech recognition summary

In the second part of this thesis, the porting of the ABBOT system to Dutch
was described and a few research issues that aimed at improving the per-
formance of the Dutch system in a broadcast news transcription task were
addressed. Below, the results of the respective research and development
steps are summarised in brief.

Training data collection

An important part of the development of a Dutch speech recognition sys-
tem was dedicated to the collection, preparation and storage of appropri-
ate training corpora both for acoustic model training and language model
training. For acoustic model training, two training corpora were created
at TNO Human Factors1. One that contained “journalistic dictation”, sim-
ilar to the Wall Street Journal corpus (WSJ0, Paul and Baker, 1992) used
in DARPA’s Hub-3 research program, and one containing broadcast news
data, comparable with the training data used for the Hub-4 broadcast news
evaluations. For language model training, the PCM Publishers provided a

1See also Appendix C
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daily feed of newspaper data of six Dutch newspapers and a number of
magazines, resulting in a training corpus, that was fixed for this research to
the period January 1999 until December 2001, of 370M words. As the daily
feed continued after this period, the newspaper collection is still growing.
Furthermore, from the Dutch National Broadcast Foundation (NOS2), auto-
cues from broadcast news programs could be obtained. Finally, a teletext
capturing card was deployed for collecting teletext subtitling from various
news related programs. All text data was carefully normalised and stored
in a database.

Although one can argue that the collection of training data is not ex-
actly a research topic, the availability of large corpora for language model
and acoustic model training is of significant importance for further im-
provements in Dutch LVCSR. One of the reasons that English LVCSR sys-
tems could obtain the high speech recognition accuracies as reported in the
broadcast news benchmark tests, was that the developers of these systems
had available huge amounts of training data for system training, provided
along with these benchmark tests (see e.g., Graff, 2002). Moreover, for do-
mains other than the broadcast news domain, the collection of domain spe-
cific data can be problematic. Mismatches in training and test conditions
are then hard to solve, in turn resulting in lower speech recognition ac-
curacies. In the ECHO project for example, the only data sources that could
be obtained were copies of carbon copies of transcripts of a small subset of
the material in the collection. The match with the entire document collec-
tion was minimal, but more importantly, using OCR techniques to digitise
the paper transcripts for use in language model training failed, due to the
low quality of the carbon copies. The development of methods that enable
a swift adaptation to various task domains could provide a solution for
such problems.

However, to enable the research and application of domain adaptation
methods for a certain language, at least a large quantity of training data
from various domains, both for acoustic modelling and language model-
ling, must be available. For the Dutch language, in March 2000, the first
release of the “Spoken Dutch corpus” (CGN, Oostdijk, 2000) was published.
This corpus currently contains more than 450 hours of orthographically
transcribed speech and will be augmented to some 1000 hours of speech
in the future. As the preparation of such a large corpus for training is la-
borious, it was decided not to use the CGN corpus for development and
research purposes in the context of this thesis, but deploy it in future re-
search as described below. For language model training, the CGN corpus
is less suitable, as this typically requires several hundreds of millions of
words of text data. With this research, the collection of a large Dutch news-
paper corpus (Twente Nieuws Corpus) was initiated, in July 2003 containing
about 450M words of text data. Although the collection of newspaper data
will continue, to enable language model training for other domains then

2see Appendix C.1
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the news domain, exploring other text data sources is required. Moreover,
a shortcoming of newspaper data in the context of language modelling for
speech recognition is that is consists of written text. To improve language
model performance for spontaneous speech, a reasonably large collection
of speech transcripts, such as the broadcast news transcripts that are avail-
able for English, would be helpful.

Related to large audio and text collections for ASR training purposes,
is the need for robust tools for a flexible processing of these amounts of
data, such as databases, and a wide range of auxiliary tools, such as norm-
alisation tools. Adaptation techniques in particular, such as the vocabulary
adaptation techniques described in Chapter 9, require that available data
can be accessed easily. Data management is however sparsely discussed in
the context of LVCSR. Although perhaps not a research issue in itself, hav-
ing flexible and robust tools available within a solid data architecture is an
important prerequisite for further improvements in LVCSR.

Text normalisation

A relatively large amount of effort was spent on text normalisation. Next
to a number of obvious normalisation procedures, a number of specific
algorithms were devised to normalise the text data collection as good as
possible. Although it can be assumed that applying a less detailed norm-
alisation procedure would sparsely have an effect on the eventual speech
recognition performance, it was interesting to note that it appeared to be
so difficult to prevent that ’strange’ lexical items showed up in the vocab-
ularies and language models. Often such lexical items were not accounted
for by the normalisation routines, sometimes they emerged from the nor-
malisation routines themselves.

The normalisation procedures resulted in a 64% decrease in distinct
words and managed to reduce the lexical variability in the text data sub-
stantially. Of the normalisation procedures that focused on variant reduc-
tion, especially the case normalisation step substantially reduced lexical
variability. The effect of the error correction normalisation steps (spelling
and diacritics) was much smaller, but at least a relatively large number of
misspelled words could be corrected.

Word pronunciations

As predicting accurately which words are to be expected in the broad-
cast news domain is difficult, typically large vocabularies are deployed for
speech recognition in this domain. Usually not all word pronunciations for
the words in these vocabularies are available in a background lexicon, so
a grapheme-to-phoneme (G2P) converter is an indispensable tool. The de-
velopment of a G2P tool was described that applies a learning algorithm
and uses a decision tree for the generation of pronunciations. This G2P
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achieved a reasonable pronunciation generation accuracy of 90% for un-
seen words. Along with a large background pronunciation lexicon, the G2P
became a valuable tool in further development and research steps.

Although the G2P achieved a reasonable pronunciation generation ac-
curacy of 90% for unseen words, it was explained that the training pro-
cedure, relying on a large proportion of rewriting rules and null-insertion
rules, is open to improvement. Circumventing the manual generation of
the majority of these rewriting rules deploying a dynamic programming al-
gorithm (Kienappel and Kneser, 2001; Mana et al., 2001), is currently being
investigated.

Besides improving the training procedure of the G2P, it can be worth-
while to investigate whether pronunciation variation can be incorporated.
It is well-known that pronunciation variation is a source of error in speech
recognition and a number of approaches have been proposed (such as
those of Kessens, 2002; Wester, 2002, for Dutch) to deal with this problem.
In automatic grapheme-to-phoneme conversion, pronunciation variation is
usually not addressed explicitly, as the goal is merely to enable the gener-
ation of a normative pronunciation of a word when the pronunciation can-
not be derived from an, often carefully constructed, background lexicon.
However, instead of regarding a G2P tool as an auxiliary tool that is only
deployed in special circumstances, a G2P can also be viewed as a speech
recognition lexicon itself, dynamically providing the word pronunciations
that are needed at a particular stage in the recognition process. In the ideal
case, the G2P provides those pronunciation variants that are most likely
given some general knowledge that it has obtained earlier about the pro-
nunciation of a given word, and some task-conditioned knowledge about
the pronunciation of words, for example generated on the basis of a recog-
nition history. The general knowledge could for example be obtained using
a data-driven approach that for example deploys forced alignment tech-
niques and decision trees for collecting pronunciation variation statistics
from automatic transcriptions of a relatively large, general speech corpus,
such as for Dutch the “Spoken Dutch Corpus”. This general pronunciation
knowledge could be represented using word pronunciation probabilities.
The task-conditioned knowledge may then be used in two ways: firstly,
to weight the probability distribution according to the local context and
secondly, to adapt the general knowledge given the local pronunciation
observations, resembling a continuous learning process. An example of
deploying weights using task-conditioned pronunciation knowledge, could
be assigning more weight to pronunciations containing certain phone de-
letions given that these were frequently observed in a task’s history. Al-
though the implementation of such an approach may be complicated and
undoubtedly introduces new problems (setting thresholds, incorporating
phonological/phonetic knowledge), it may provide a framework for a dy-
namic handling of pronunciation variation in large vocabulary speech re-
cognition tasks.

In general, the handling of the, frequently occurring loanwords and for-
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eign names in the BN domain, deserves some more attention in G2P de-
velopment. As the pronunciation of these words often contradicts Dutch
pronunciation rules, the correct word pronunciations will often not be gen-
erated by a G2P, even when these words had been included in the training
set. Currently, the only solution seems to include loan words and foreign
names as often as possible in a background lexicon. Preferably, one would
deploy some sort of language detection and generate a pronunciation on
the basis of the language classification. For example, when the language
detection tool classifies a word as being an English word, an English G2P
could be consulted for the generation of the pronunciation.

A final issue that needs to be addressed in the context of future research
in grapheme-to-phoneme conversion is compound splitting. The chance
that a Dutch compound word is not in the background lexicon, and hence,
its pronunciation has to be obtained via a G2P tool, is generally higher
than for non-compound words as new compounds can be easily invented.
However, by splitting the compound into its components, a pronunciation
could still be generated from the lexicon by concatenating the available
pronunciations of the components. In order to produce correct pronun-
ciations, co-articulation rules must be applied during the concatenation
process. Although compound splitting was addressed in this thesis in the
context of vocabulary construction, it was not yet applied within the con-
text of word pronunciation generation. It is worthwhile investigating how
much the amount of word pronunciations that can be provided by the
background lexicon (currently some 75%), can be improved by applying
compound splitting, and a procedure for component concatenation and co-
articulation correction.

Acoustic modelling

The acoustic models for this research were based on a relatively small
broadcast news corpus containing 14 hours of speech, that was especially
created for this research. In spite of the small amount of training data com-
pared to the amounts that are typically used for the Hub-4 evaluations, the
acoustic models provided a reasonable performance in terms of phone er-
ror rate on the broadcast news test data, especially when model merging
was applied. By merging the output of the RNN acoustic models trained
forwards and backwards in time, phone error rates could be improved with
4–5% relative.

Regarding the acoustic modelling part of a LVCSR system, a number
of research topics can be identified. An interesting topic is how the CGN
corpus can best be deployed to improve LVCSR performance in the BN do-
main and in general. The corpus could for example be used for the training
separate acoustic models for specific acoustic conditions, especially the
training of gender and bandwidth dependent models. With the relatively
small amount of available training data gender and bandwidth dependent
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modelling was not considered for this research. As the speech data in the
corpus is collected from a variety of domains, the question is how this
data can best be exploited for a given task domain. A possible approach is
to divide the data into a number of global domains. Domains that have a
certain resemblance with the target domain can then be added to a training
set. Alternatively, different models could be trained and merged at run-time
to obtain weighted phone probability estimates based on different informa-
tion sources. Furthermore, this corpus enables the investigation of acoustic
model adaptation techniques. Other research topics include the application
of lightly supervised or unsupervised training (Lamel et al., 2001), and the
automatic identification of speaking styles, accents and non-native speech.

Vocabulary construction

The selection of words for the language model vocabulary was regarded
as an important issue in the context of a Dutch broadcast news transcrip-
tion task, in order to reduce the number of out-of-vocabulary words for
this domain. Word selection was addressed as being a matter of appropri-
ate training data partitioning: either on the basis of content information
or on the basis of temporal information. Using temporal information for
data partitioning was discussed in more detail. A number of vocabulary se-
lection methods based on temporal data partitioning and word frequency
information were discussed. It was argued that word frequency informa-
tion alone is inadequate to predict which words are to be expected in a
particular news show at a specific point in time. In order to capture word
importance dynamics in a domain that typically shows large word fluctu-
ations with this respect, a novel method was introduced, referred to as the
binary prediction method. This method tries to incorporate temporal in-
formation directly into the selection procedure. Indeed, this method gave
the best OOV performance in a vocabulary selection experiment, that com-
pared a number of different vocabulary selection techniques. However, the
gain was too small to warrant strong conclusions regarding this method.

Speech recognition performance could benefit greatly from an accurate
prediction of the words that are most likely to appear at a certain point in
a speech recognition task. It would reduce the OOV rate and in the ideal
case, prevent the selection of words in the vocabulary that have a low
chance of occurring, enabling the use of smaller vocabularies. In this re-
search, temporal information was deployed in a highly simplified way, as a
first approach to improve word prediction in the broadcast news domain.
Although only small lexical coverage improvements were obtained, the res-
ults showed that temporal information can provide additional information
about word occurrence. But still, large 65K vocabularies had to be deployed
to obtain a comparable lexical coverages as were obtained using the stand-
ard relative frequency approach. Further research should aim at improving
the representation of temporal information so that it can more adequately
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be used for word prediction.

Compound splitting

That compound splitting could improve speech recognition performance
for Dutch has often been suggested but was not yet fully investigated in a
full scale, Dutch speech recognition experiment. For this purpose, a data-
driven compound splitting algorithm was created that used an alphabet-
ically sorted word frequency files based on a large amount of newspaper
data. Although recall of the algorithm could not be computed, it was ex-
plained that the design of the algorithm guarantees that compound recall
will at least be sufficiently high for the purpose of the experiment. Precision
of the algorithm, measured on the first iteration of the algorithm and using
a commercial dictionary with constituent boundary labels, was 97.7%.

A first comparison between the original text version and a fully decom-
posed text version showed a 20% reduction in distinct words and a better
lexical coverage for lexicons derived from the decomposed data. Restrict-
ing the compound splitting procedure aiming at even better lexical cover-
age performance was investigated in detail by looking at the contribution
to the self-coverage of a 65K lexicon of individual decompositions. When
such individual decompositions did not improve lexical coverage by them-
selves, they were excluded from the list of compounds used for the actual
decomposition of the text data. However, this procedure did not yield a
robust improvement of lexical coverage of lexicons.

A number of language models were created to investigate whether com-
pound splitting also improves speech recognition performance. One lan-
guage model was based on the original text data (baseline) and the others
were based on text data that was decomposed in different ways: two us-
ing a full compound splitting procedure without applying any restrictions,
and three using a restricted compound splitting procedure that only de-
composed compounds when they were not frequent enough to be included
in a lexicon of size N, where N was chosen to be 5K, 20K and 65K. For
the unrestricted procedure, two text version were created: one that treated
the binding morpheme as a separate constituent and one that attached
the binding morpheme to the preceding constituent. The language models
were evaluated in a broadcast news transcription task. The language mod-
els that were created using the restricted compound splitting procedure, in
which compounds in the 0-20K word frequency range were omitted, gave
the best speech recognition performance. However, the performance differ-
ence with the language models based on unrestricted compound splitting
was only marginal (1% absolute).

Although the research described in this chapter confirmed the hypo-
thesis that compound splitting can improve lexical coverage and speech
recognition performance for Dutch, some issues remain that deserve to be
looked into more closely. Firstly, for specific tasks, having available an ac-
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curate reverse compound splitting procedure (that maps constituents back
to the original compounds as addressed in Section 10.5.1) may be crucial.
In a spoken document retrieval framework, reverse compound splitting is
of minor importance, but in a dictation task for example, it may be ex-
pected that a user of a speech recognition system requires compounds to
be reassembled automatically. Applying reverse compound splitting in this
research introduced a substantial amount of incorrect compounds. In or-
der to improve this procedure, the compound detection algorithm could
be improved so that incorrect compound mappings can be prevented. Al-
ternatively, the compound splitting table can be post-processed to exclude
entries that introduce incorrect mappings.

A second issue for future research is the exact behaviour of compounds
and decomposed compounds in the language model. Given that WER im-
proved with increasing OOV rates using language models based on the re-
stricted splitting procedures, it was hypothesised that this procedure en-
ables the creation of more robust n-gram language models. However, this
research could not provide evidence for this hypothesis. It may therefore be
worthwhile to search for an experimental design that enables the investig-
ation of compound splitting on the language model level. Furthermore, the
effects of applying the opposite of compound splitting could be included in
this investigation: the combination of frequent orthographic word tuples,
referred to as multi-words, into single items in the recognition lexicon, as
proposed for example by Gauvain et al. (1997).

Language modelling

Most of the subjects discussed in the speech recognition part of this thesis
were practically brought together in a number of speech recognition eval-
uations. The primary goal in these evaluations was to investigate language
modelling in a broadcast news transcription task and a number of language
modelling configurations were evaluated. An optimal baseline trigram lan-
guage model was obtained, in terms of performance and size for the Dutch
broadcast news domain, and given a substantial newspaper training collec-
tion of a few hundreds of millions of words, using a vocabulary of the 65K
most frequent words in the training corpus, n-gram cutoffs of 2, Kneser-
Ney discounting with interpolation, and optionally, n-gram pruning with a
threshold of 10−9. Attempts to improve the performance of the baseline
model focused on data selection and language model merging. It was con-
cluded that the available category labels in the newspaper text corpus could
not successfully be deployed for the improvement of the baseline models.
It was suggested to use an automatic clustering procedure as proposed in
for example Gotoh and Renals (2000) or Seymore and Rosenfeld (1997) to
generate more appropriate clustering decisions for the generation of lan-
guage models that better suit the task domain. Moreover, using a relatively
small amount of autocues data, closely matching the general properties
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of the task domain, improved speech recognition performance. Best results
were obtained in a mixture LM framework, that merges a general LM trained
using a large amount of data with a domain specific LM. Finally, extending
the mixture approach by generating mixtures of general language models
and topic specific language models, created using IR techniques, was the
most successful language model creation procedure tested.

It was already mentioned at the start of this section that in order to
extend the focus of language models beyond the broadcast news domain,
extending the coverage of the LM training data is required as well, as lan-
guage models are very sensitive to training and test mismatches. In this
research domain adaptation was briefly investigated by deploying a dual-
pass decoding strategy along with information retrieval techniques. How-
ever, as processing time slowed down considerably applying this method,
optimising this procedure or even identifying other techniques is required.

Evaluation

In real-life speech recognition applications, the task domain is dynamic
which requires that a speech recognition system that was once developed
for a domain is adapted and evaluated frequently. Monitoring and evalu-
ating a speech recognition system however, requires a speech recognition
expert and evaluation data. For many ASR applications, for example a sys-
tem that is used for the daily recognition of broadcast news for a SDR ap-
plication, the frequent deployment of a speech recognition expert and the
generation of evaluation data is costly. To provide for a manageable mon-
itoring and evaluation procedure for this type of systems, (semi-)automatic
evaluation mechanisms are indispensable.

Porting ABBOT to Dutch

The results of the speech recognition evaluations described in Chapter 11,
confirms that the ABBOT system has been successfully ported to Dutch. A
baseline performance in the broadcast news domain of 34.6% MSWER was
obtained and the best performance was achieved using large RNNs for the
acoustic models and a multi-pass decoding strategy along with information
retrieval techniques for the creation of optimal language models, yielding a
MSWER of 29.0%. Although this performance cannot equally be compared
with the performances of English systems participating in TREC (between
20% and 30% WER) due to the different experimental conditions, it can be
concluded that a major step forward in catching up with the international
state-of-the-art in broadcast news transcription is achieved. At least, the
performance of the Dutch system can be regarded as satisfactory for the
envisaged spoken document retrieval task, given the observations in the
TREC SDR tracks that speech recognition with a word accuracy of about
60% can already successfully be deployed for spoken document retrieval
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(Garofolo et al., 2000). Possible research and development directions aim-
ing at bridging the final gap between the performance of the current Dutch
system and English state-of-the-art systems, are discussed in the next sec-
tion.



Part III

Spoken Document Retrieval
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Chapter 13

An illustrative SDR
experiment

This chapter gives an illustrative example of the application of the Dutch
speech recognition as described in Part II of this thesis in a spoken document
retrieval task in the broadcast news domain.

13.1 Introduction

The ultimate goal of the research and development steps described in the
preceding part, was to obtain a speech recognition system that could suc-
cessfully be deployed for Dutch spoken document retrieval tasks. It was
concluded in Chapter 12 that the ABBOT system had successfully been
ported to Dutch and that the system is ready to be deployed in a spoken
document retrieval framework, either in a LVCSR configuration which has
been the main focus of the research in this thesis, or alternatively, in a
keyword spotting configuration or a configuration based on sub word units
(phones), as described in detail in Chapter 2.

With the TREC spoken document retrieval tracks, ample experience has
been obtained with the evaluation of spoken document retrieval systems. In
the first SDR evaluations performed during TREC-6 in 1997, a known-item
retrieval task was chosen for evaluation. A known-item retrieval task simu-
lates a user seeking a particular, half-remembered document in a collection.
The SDR system in such a task, is required to generate a single correct doc-
ument for each query, rather than a set of documents ranked according
to relevance, as in an ad-hoc task (Voorhees et al., 1997). The ad-hoc task
was used for evaluation from TREC-7 onward. Here, participating systems
provide for every query (called “topic” in TREC) in the task a list of docu-
ments that are ranked according to relevance. The top 100 documents that
were retrieved by participating systems and by judges performing manual
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and semi-automatic searches, referred to as the pool, were then assessed by
“judges” providing relevance judgements: whether a document in the pool
is relevant given a query or not.

For an ad-hoc style SDR evaluation not only a realistically large test col-
lection is required, but also judgements need to be generated. Given the
available time and resources, such an evaluation was not feasible. There-
fore, a known-item retrieval task was chosen in order to be able to demon-
strate the application of Dutch speech recognition in a first Dutch SDR
evaluation.

13.2 Experimental design

For the known-item SDR evaluation, a set of 18 television news broadcasts
(“NOS Acht uur journaal”) from January 2002 until March 2002 were collec-
ted andmanually transcribed on the word level. Manually segmented (hand-
annotated temporal story boundaries were given): 180 stories, mean length
of 257 words. Introductions and weather reports were excluded. Story top-
ics were generated by students who were instructed to create topic “titles”
that in a few words (with a maximum of ten words) give a reasonable im-
pression of the contents of the story. These titles were further interpreted
as query aiming at the retrieval of the respective story. The retrieval task
was to find for every query, the target story. The titles were used as queries
for retrieval given the following evaluation modes:

• using document representations that are based upon perfect, human-
transcribed reference.

• using document representations based upon a speech recognition sys-
tem producing a relatively large number of errors. A speech recogni-
tion configuration with a 5K vocabulary and language model that had
obtained a mean story word error rate (MSWER) of 50.9% was used
(see Chapter 11).

• representation based upon a relatively well performing speech recog-
nition system. The best performing baseline system that used Kneser-
Ney discounting, a 65K vocabulary and a large RNN (1024 hidden
units) produced the transcripts. This system obtained a MSWER of
30.9% on the broadcast news test data described in Chapter 11.

• using a phone-based document representation. Here the speech re-
cognition system was used as a phone recogniser with a large RNN
trained on the TNO-BN corpus as described in Chapter 5. Two types
of document representations were created using the phone outputs:
one uses sub word units of three phones with N phone overlap, the
other uses four phones with N phones overlap.
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For retrieval, Okapi termweighting was applied as described in Section 11.2.
The following evaluation methods as applied at TREC-6 were used:

• Mean rank when found (MRWF), defined as the mean rank at which
the target story was found, averaged across all queries that retrieved
the target stories in all retrieved documents.

• Mean reciprocal rank (MRR), defined as the mean of the reciprocal of
the rank at which the target story was found over all queries, using 0
as the reciprocal for queries that did not retrieve the story.

13.3 Results

Table 13.1 shows the results of the known-item retrieval task. Using the
reference transcript as document representation gave the best retrieval
performance in terms of found documents and mean reciprocal rank. Us-
ing high quality speech recognition produced comparable results: only one
more document was not found (10 instead of 9) and the mean rank when
found was even slightly better compared to one obtained in the reference
condition. As could be expected, deploying a low quality speech recogni-
tion system significantly worsens retrieval performance. Almost a quarter
of the documents could not be found, on average, the target stories were
retrieved almost one rank lower, and the mean reciprocal rank decreased
almost 35% relative compared to the high quality speech recognition condi-
tion. In the sub-word based conditions only half of the queried documents
could be found and in such cases, the target documents appeared on av-
erage at rank 8. Mean reciprocal rank dropped compared to the ASR-high
condition with almost 44% relative.

'

&

$

%

document representation MRWF MRR not found
Reference 2.0778 0.7462 9 (5%)
ASR-high 1.9278 0.7689 10 (5.6%)
ASR-low 2.8556 0.5061 43 (23.9%)
3-phone 8.3042 0.3319 87 (48.3%)
4-phone 8.1939 0.3278 87 (48.3%)

Table 13.1: Mean rank when found (MRWF), mean reciprocal rank (MRR)
an number of documents not found given 180 queries for document
representations based upon the reference transcript, speech recognition
with a low performance (ASR-low), speech recognition with a good per-
formance (ASR-high) and phone recognition with 3-phones and 4-phones
with an overlap of N phones.
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13.4 Conclusions and future research

The known-item retrieval task illustrated well how speech recognition tran-
scripts can be used for the retrieval of Dutch broadcast news programs
and that the speech recognition system described in this thesis, can suc-
cessfully be deployed in a spoken document retrieval task. Speech recog-
nition performance was significant in this experiment. Retrieval perform-
ance deteriorated when LVCSR performance dropped to some 50% MSWER.
The results of the subword unit based approach, deploying a phone recog-
niser, were disappointing. Its retrieval score and the difference in perform-
ance with the LVCSR systems, does not justify further research into this
area. Further research is needed to investigate Dutch SDR using the current
Dutch speech recognition implementation in a more realistic ad-hoc style
experimental set-up using a larger test collection.



Chapter 14

Summary and conclusions

With a reference to the original goals of this thesis, this chapter summar-
ises the research and development work that was addressed, provides an
overview of the conclusions that were based upon this work, and discusses
possible future research directions.

14.1 Original goals of this thesis

The goal of the research and development work described in this thesis
was to realise a conceptual and practical framework for the investigation
of a wide range of issues related to information retrieval in the context
of multimedia and spoken-word collections. The main focus in this thesis
is on solving the representation mismatch between natural language quer-
ies (text) and the representation of documents in such collections (audio
and/or video) using speech recognition techniques, referred to as spoken
document retrieval (SDR). International publications on SDR have shown
that deploying a large vocabulary speaker-independent continuous speech
recognition (LVCSR) system is generally the best option for SDR. As a Dutch
LVCSR system was not available, an important goal was to develop and im-
plement a Dutch system that could be used in a Dutch SDR framework,
and to set a baseline LVCSR system to enable further research in the field
of Dutch LVCSR. Using this baseline system, the aim was to contribute to
Dutch LVCSR research by addressing issues in Dutch LVCSR that had re-
ceived almost no attention: compound splitting, vocabulary selection and
language modelling. Finally, the goal was to demonstrate the applicability
of the Dutch system in an experimental retrieval environment.
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14.2 Summary

The first part of this thesis (Part I), addresses the theoretical framework
of information retrieval in the context of multimedia and spoken-word col-
lections. It is explained how the query/document representation mismatch
in these collections can be solved by using SDR and a number of speech
recognition techniques that have been deployed in this field are discussed.
Part II, provides a detailed specification of the development of the Dutch
LVCSR system. First the characteristics of the English ABBOT speech re-
cognition system, a hybrid RNN/HMM system that was used as a starting
point for the Dutch system, are described. Next, the generation of word
pronunciations for the speech recognition dictionary is addressed. It is
shown that given the large vocabularies and the characteristics of Dutch
(i.e., word compounding), a tool for automatic pronunciation generation
(automatic grapheme-to-phoneme conversion) is indispensable. As ready-
to-use grapheme-to-phoneme (G2P) conversion software was not available
for Dutch, a Dutch G2P tool was developed which is also described in the
second part. The remainder of this part consists of a specification of the
training of the acoustic models and language models suitable for speech
recognition in the broadcast news domain, along with a broadcast news
LVCSR performance evaluation. Specific topics that are addressed are the
collection and preparation (normalisation) of speech corpora and text cor-
pora for training, optimisation of the speech recognition vocabulary using
word selection methods and improving speech recognition performance by
applying compound splitting. Part III finally demonstrates the application
of the Dutch LVCSR system in SDR by describing the results of a known-
item retrieval experiment using a collection of broadcast news programs.

14.3 Overview of conclusions

By providing an overview of information retrieval in the context of multi-
media and spoken-word collections and a detailed listing of the main is-
sues in spoken document retrieval, Part I contributes to the realisation of
a conceptual framework that can further be explored and refined. The pro-
totype Dutch SDR set-up can be further improved and extended to other
domains and applications. Given the observations in the TREC SDR tracks
that speech recognition with a word accuracy of about 60% can already suc-
cessfully be deployed for spoken document retrieval, the system can be re-
garded as satisfactory for spoken document retrieval tasks in general, as a
performance in the broadcast news domain of on average between 30% and
40% WER was achieved. However, as spoken document retrieval perform-
ance benefits from an improved speech recognition performance, directing
further research to speech recognition performance optimisation remains
useful. Moreover, as for other task domains than broadcast news, achiev-
ing a comparable speech recognition performance can be complicated (for
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instance in less structured domains, or domains for which language model
training corpora are difficult to obtain), further research is necessary. The
developed baseline Dutch LVCSR system can appropriately be deployed for
this.

In this research, the baseline LVCSR system was used to investigate a
number of research topics that are especially relevant for the development
of a Dutch LVCSR system. It was shown that due to this high lexical vari-
ability in Dutch, it was shown that either a very large background lexicon
and/or a robust grapheme-to-phoneme converter are indispensable for the
generation of word pronunciations for the recognition dictionary. This is
especially the case in dynamic task domains such as the broadcast news
domain that requires frequent vocabulary updating. Complications of the
high lexical variability in Dutch also showed up when words had to be selec-
ted for the speech recognition vocabulary. It is explained that a high lexical
variability means that vocabulary space is sparse, requiring a careful selec-
tion of words for the speech recognition vocabulary to reduce the number
of out-of-vocabulary words. After investigating a number of word selection
mechanisms, the following conclusions were drawn:

• A selection of approximately one year of recent newspaper data may
be regarded as an optimal starting point for a word frequency based
selection of vocabulary words for the representation of Dutch news
broadcasts. One year is long enough to capture words that have a
not very high but consistent frequency, and short enough to reduce
the chance of unintentionally including words in the vocabulary that
have built up high frequency counts in the past but are not relevant
anymore in up-to-date news events.

• In longitudinal speech recognition tasks in the broadcast news do-
main, periodic updating of the vocabulary is necessary as to enable
the recognition of new words that gradually appear over time.

• A simple but effective procedure for periodic updating is the use of
a shifting look-back time-window of approximately one year for word
selection based on word frequency counts.

• The results of the experiment suggest that including temporal word
usage information in the word selection procedure can improve OOV
performance of vocabularies, provided that the word frequency in-
formation is already robust in itself.

Further research is needed to search for a better paradigm for representing
temporal information. In this research, temporal information is used in a
highly simplified way and in a compressed format. It can be argued that
by doing so, only little temporal information is helpful in the vocabulary
selection procedure.

The investigation of compound splitting in the context of LVCSR stems
from the lexical variability considerations in Dutch. It was investigated
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whether compound splitting could effectively be deployed to enlarge the
coverage of speech recognition vocabularies so that OOV words can be re-
duced. The following observations are worthwhile summarising:

• Using a large text corpus and a purely data-driven compound splitting
algorithm, a compound splitting table can be generated with a high
recall and precision.

• When there aremultiple splitting alternatives, the most plausible split-
ting alternative can often be found by using the frequency of the com-
pound parts in the training data and the within-compound frequency
of the parts.

• Compound splitting improves the lexical coverage of large vocabular-
ies selected on the basis of relative frequencies in the training data.
Excluding compounds from the splitting procedure that may not im-
prove lexical coverage when split given their relative frequency rank-
ing, does not further improve lexical coverage.

• Language models based on decomposed text data improve speech re-
cognition performance. Best speech recognition results are obtained
when compound words in the 0-20K word frequency range are not de-
composed. This indicates that highly frequent compound words are
already adequately modelled.

Further research directed toward compound splitting in Dutch LVCSR must
provide more insight into the behaviour of compound words either decom-
posed or not, in the language model. Moreover, as in this research com-
pounds were decomposed only when their constituents had a minimum
length of six characters, it is worthwhile to investigate whether an optimal
constituent length can be found experimentally.

To set a baseline for Dutch language modelling, a number of n-gram lan-
guage modelling schemes were evaluated with regard to Dutch speech re-
cognition performance. On the basis of these evaluations it was concluded
that:

• Due to the decrease in OOV words, larger speech recognition vocabu-
laries up to 65K words give better speech recognition performances
in spite of an increased acoustic confusability.

• The effect on speech recognition performance of choosing a partic-
ular smoothing technique is marginal for the Dutch broadcast news
domain and given newspaper training data.

• Interpolating a general language model based on a large collection
of (newspaper) data and a domain specific language model based on
domain specific (autocues) training data significantly improves speech
recognition performance.
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• Narrowing down the focus of the language model creation procedure
to the topic-level, by generating mixtures of general language mod-
els and topic specific language models using a dual-pass decoding
strategy and IR techniques, the quality of a language model can be
further improved at the cost of a substantial increase of processing
time.

Regarding the development of the acoustic models for the ABBOT system
it was concluded that a relatively small amount of 14 hours of domain spe-
cific acoustic training data is already sufficient to obtain a remarkably good
speech recognition performance using the hybrid RNN/HMM framework
of the ABBOT system. It may be expected that adding more training data
in the order of magnitudes that are customary in the HUB4 evaluations,
and by training context-dependent acoustic models (gender, bandwidth),
the current speech recognition performance can further be improved.

Along with the development of a baseline Dutch LVCSR system, the fol-
lowing contributions were made to Dutch LVCSR research:

• Newspaper corpus (TwNC)
The collected Dutch newspaper data were converted to a uniform
XML-format and made available to the research community as the
Twente News Corpus (TwNC). The collection contains 370M words
of data. A number of research sites currently use the corpus for a
variety of research activities.

• Normalisation module
Along with the newspaper corpus, the source-code (in Perl) of the de-
veloped normalisation routines is provided.

• Grapheme-to-phoneme converter (G2P)
A version of the G2P that was trained using the CELEX lexical database
was made available for UNIX and Windows.

14.4 Future directions

A number of possible future research topics regarding Dutch LVCSR and
SDR have already been mentioned in this chapter and previous chapters.
Obviously, the list of topics is far from being exhaustive and additional re-
search topics can be thought of that may in one way or another improve
LVCSR and/or SDR performance for Dutch. To keep up with the interna-
tional technological advances and state-of-the-art, and to enable particip-
ation in future collective research initiatives on an international level in
the domain of spoken-word audio collections, a number of research and
development topics require priority attention.
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14.4.1 Training corpora

For further speech recognition improvements, additional training corpora,
especially for language model training need to be collected. For acoustic
model training, the CGN corpus is very well suited for further Dutch LVCSR
research, although it must be noted that this corpus contains speech from a
variety of domains and may not be very suitable for domain specific acous-
tic model training requiring large amounts of in-domain data. The devel-
opment of tools for unsupervised acoustic model training (see e.g., Lamel
et al., 2001) might be suited when an SDR application has to be extended to
other domains than the broadcast news domain. For language model train-
ing, only newspaper data is widely available in sufficient amounts. However,
the resemblance of this type of data with real life speech is known to be
low. The collection of text corpora that better match speech in real life ap-
plications needs special attention. Alternatively, research could focus on
modelling spontaneous speech using the available written-text corpora, for
example, by incorporating breath noises and hesitations at specific points
in the data. At least, investigating the extent to which written-text corpora
do or do not match real-life speech in Dutch, is an interesting starting point
for future research.

14.4.2 Domain specific models

Improving Dutch LVCSR performance to a level that is comparable with the
international state-of-the art, is not simply a matter of addressing specific
research and development topics. In general, each topic may contribute a
few percentages, or tenths of percentages, to the overall improvement of
a system. All contributions together may eventually result in a substantial
improvement. However, at least for the broadcast news domain, gender-
dependent and bandwidth-dependent acoustic modelling have proven to
boost speech recognition performance significantly. This type of acoustic
modelling may therefore be a good choice to start with to improve the cur-
rent Dutch LVCSR system. Apart from better matching training corpora,
language modelling can benefit from research aiming at a more accurate
prediction of the content (speech type, topic, named entities) of specific
parts in the task domain. Accurate content prediction enables the selec-
tion of high quality training data, the creation of topic specific (mixture)
language models, and the creation of vocabularies with a better coverage.

14.4.3 Maintenance and monitoring

Other topics that need to be addressed are related to the inclusion of LVCSR
techniques into realistic SDR applications. An important consideration for
such applications is that they need to be maintained and monitored. In
most realistic task domains, speech recognition components need to be ad-
apted to changes in the domain with a certain frequency. It may for instance
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be desirable to adapt available speaker-dependent acoustic models to a new
television news anchor-man/woman, update the language model, or check
the automatically generated word pronunciations (especially of named en-
tities) that have recently entered the domain. Moreover, especially in SDR
applications, speech recognition performance degradations cannot easily
be noted. Regularly monitoring the system’s performance is therefore de-
sirable. Making adaptations by “hand” using an expert, or letting an expert
perform system evaluations, is not only costly, but often impractical as
well. Investigating whether maintenance and monitoring can be performed
(semi-)automatically or lightly supervised, is becoming increasingly import-
ant since SDR performance is good enough to be implemented in realistic
applications.

In general, having better means available to evaluate Dutch LVCSR and
SDR is an important prerequisite for further research and development.
As evaluation corpora and test collections are costly to develop, often only
relatively small amounts of evaluation data can be used. In some cases, cer-
tain evaluation methods cannot be used at all. For the evaluation of Dutch
SDR for example, preferably a TREC-like SDR corpus along with relevance
judgements should be available. However, such a collection was not within
reach for this research. Initiatives aiming at improving the means for Dutch
LVCSR and SDR evaluation will therefore be welcomed.
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Appendix A

Short description of UT
projects involving ASR

A.1 OLIVE

The goal in the OLIVE project was the development of a
multilingual indexing tool for broadcast material based on
speech recognition. The Olive project was funded by the
European Commission under the Telematics Application
Program. It started in 1998 and lasted until 2000. Speech
recognition for German and French was developed by LIMSI
and Vecsys (France).

A.2 DRUID

DRUID aimed at the development of tools for the index-
ing and retrieval of multimedia content on the the basis of
image processing and language and speech technology’. It
was a project within the scientific program of the Telemat-
ica Instituut, an institute is co-funded by the Dutch govern-
ment and a number of industrial partners. DRUID started
in 1998 and lasted until the end of 2001.
DRUID project website: http://dis.tpd.tno.nl/druid/
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A.3 ECHO

The ECHO project developed a software infrastructure to
support digital film archives, to provide web-based access
to collections of historical documentary films of great in-
ternational value and to increase the productivity and cost
effectiveness of producing digital film archives (see also,
Ordelman, 2000) . In this project, speech recognition was
one of the tools for content disclosure. ECHO was a project
within the 5th Framework Program IST (Information Soci-
ety Technologies) of the European Union. It started in 2000
and ended in 2003.
ECHO project website: http://pc-erato2.iei.pi.cnr.
it/echo/

A.4 MUMIS

In the MUMIS, basic technology for automatic indexing
of multimedia program material was developed. Domain
of focus was soccer and speech recognition was one of
the technologies applied. MUMIS was a project within the
5th Framework Program IST (Information Society Techno-
logies) of the European Union and was funded under the
5th Framework Program of the European Community). MU-
MIS started in 2000 and ended in 2003.
MUMIS project website: http://parlevink.cs.utwente.
nl/projects/mumis/

A.5 WATERLAND

The WATERLAND project focuses on semi-automatic tech-
niques for metadata extraction in the digital production
of media. Improvement of the existing speech recognition
technology for Dutch, is one of the aims of the project.
Furthermore, the evaluation of system components is ad-
dressed specifically. The project started in June 2001 and
will last until the end of May 2005.
WATERLAND project website: http://www.innovatie.
nob.nl/waterland/
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DRUID phone set
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IPA DRUID EXAMPLE IPA DRUID EXAMPLE
p p pak

sil b b bak
a a: naam d d dak
e e: heet t t tak
o o: boot k k kat
u u boek g g goal
y y vuur f f fel
i i riet v v vel
@ @ gemak s s set
A A bak z z zet
E E pet x x toch
I I pit h h hand
O O pot S S sjaal
œ U put Z Z jam
au AU goud m m man
Ei EI fijn n n naam
ø EU reus N N bang
2y UI huis l l land
øô EUr deur r r rand
eô e:r beer w w wit
oô o:r boor j j jong

t tj watje

Table B.1: DRUID phone set
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Appendix C

List of Names, Institutions and
Software

C.1 Names and institutions

• Van Dale

Van Dale Lexicografie is one of the major dictionary publishers in The
Netherlands and provided the pronunciation lexicon that was used in
this research.

URL:http://www.vandale.nl

• PCM Publishers

Dutch newspaper publisher that provided the newspaper data that
were used in this research of the following Dutch newspapers: Volk-
skrant, NRC Handelsblad, Trouw, Algemeen Dagblad en Het Parool.

URL:http://www.pcmuitgevers.nl

• NIST

US National Institute of Standards and Technology. NIST’s mission
is to develop and promote measurement, standards, and technology.
The TREC (http://trec.nist.gov) Conference series is co-sponsored
by the NIST, Information Technology Laboratory’s (ITL) Retrieval Group.

URL:http://www.nist.gov

• LDC

Linguistic Data Consortium, supports language-related education, re-
search and technology development by creating and sharing linguistic
resources: data, tools and standards.

URL:http://www.ldc.upenn.edu/
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• ELRA

The missions of the European Language Resources Association are
to promote language resources for the Human Language Technology
(HLT) sector, and to evaluate language engineering technologies.

URL: http://www.elra.info/

• SPEX

The Speech Processing EXpertise centre was founded in 1987 with the
objective to develop and provide software, tools and databases for
companies and institutes active in research and development in the
general field of speech, with an emphasis on speech technology. SPEX
has a special task in making available spoken language resources for
research purposes in the Dutch academic environment.

URL:http://www.spex.nl

• Beeld&Geluid

The Netherlands Institute for Sound and Vision was established in
1997 as the result of a merger between three large audiovisual archives
and the Broadcast Museum. Substantial collections of radio and tele-
vision programmes, documentaries, commercials, amateur films, pho-
tographs and music are all to be found at this institute. The (total)
archival holdings include materials dating from the earliest days of
cinema right up to current news broadcasts. Estimations of the size
of the archive range from 800.000 to almost one million hours worth
of viewing and listening. The major collection currently held is that
of the (Dutch) public broadcasters, the magnitude of which increases
daily.

URL:http://www.beeldengeluid.nl

• NOS Nederlandse Omroep Stichting (Dutch National Broadcast Found-
ation).

URL:http://www.omroep.nl/nos/noshome/index.html

C.2 Software

• HTK-toolkit

The Hidden Markov Model Toolkit (HTK) is a toolkit for building and
manipulating hidden Markov models and is widely used for speech
recognition research. HTK can be obtained through

URL:http://htk.eng.cam.ac.uk

• sclite scoring software

This software comes with the NIST Scoring Toolkit (SCTK) that can be
downloaded at http://www.nist.gov/speech/tools/.
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• SRI language modeling toolkit

SRILM is a toolkit for building and applying statistical language mod-
els (LMs), primarily for use in speech recognition, statistical tagging
and segmentation. It has been under development in the SRI Speech
Technology and Research Laboratory since 1995. See also Stolcke (2002).

URL: http://www.speech.sri.com/projects/srilm/

• NIST tools

Including evaluation tools, language technology tools (e.g., audio seg-
mentation), and corpus building tools.

URL: http://www.nist.gov/speech/tools/
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Appendix D

Speech corpora

D.1 TNO-NRC corpus

The TNO-NRC speech database was created at TNO Human Factors in Soes-
terberg, The Netherlands and consists of 52 speakers (26 male, 26 female)
reading lines from a Dutch newspaper (NRC Handelsblad). All speech files
had been recorded using a Sennheiser HMD 414-6 close-talking microphone.
The corpus contains almost 7 hours of speech.

D.2 TNO-BN corpus

Also at TNO Human Factors in Soesterberg, The Netherlands, the TNO-
BN speech database was created. Some 20 hours of Dutch broadcast news
shows (NOS Acht uur journaal) were manually segmented and transcribed
at the word level. A first version of the TNO-BN corpus, also referred to in
this research, contained 14 hours of speech.

D.3 Groningen corpus

The Groningen corpus is a corpus of read speech of 238 speakers who
read 2 short texts, 23 short sentences containing all possible vowels and
all possible consonants and consonant clusters in Dutch, 20 numbers and
16 monosyllabic words containing all possible vowels in Dutch. The record-
ings were made in a silent room with living room acoustics using a B&K
4003 microphone. Files were down-sampled from 48kHz to 16kHz. The
corpus contains over 20 hours of speech. The speech data was gathered by
Drs. A. M. Sulter, as part of an NWO project.
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D.4 Speech Styles corpus

The Speech Styles database was made by SPEX and contains spontaneous
speech (one monologue per speaker), semi-spontaneous speech (five pic-
ture descriptions per speaker) and read speech (five per speaker) of 130
speakers in total.

D.5 Spoken Dutch Corpus (CGN)

Release 5 of the Spoken Dutch Corpus (Oostdijk, 2000) was published in
April 2002 and contains more than 450 hours of orthographically tran-
scribed speech of a target of 1000 hours of speech. A part of the data is
enriched with part-of-speech tags.
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Summary

As data storage capacities grow to nearly unlimited sizes thanks to ever
ongoing hardware and software improvements, an increasing amount of
information is being stored in multimedia and spoken-word collections.
Assuming that the intention of data storage is to use (portions of) it some
later time, these collections must also be searchable in one way or another.
For multimedia and spoken-word collections, traditional text-oriented in-
formation retrieval (IR) strategies inevitably fall short, as the amount of
textual information included with these types of documents is usually very
limited. However, when automatic speech recognition (ASR) can be used to
convert the speech occurring in these documents into text, textual repres-
entations can be created that in turn can be searched using the traditional
text-based search strategies. As ASR systems label recognized words with
exact time information as a standard accessory, detailed searching within
multimedia and spoken-word collections can be enabled. This type of re-
trieval is commonly referred to as Spoken Document Retrieval (SDR).

Typically, large vocabulary speaker independent continuous speech re-
cognition systems (LVCSR) are deployed for creating textual representa-
tions of the spoken audio in multimedia an spoken-word collections. For
Dutch however, such a system was not available when this research was
started. As creating a Dutch system from scratch was not feasible given
the available resources, an existing English system, refered to as the ABBOT
system, was ported to Dutch. A significant part of this thesis is dedicated
to a complete run-down of the porting work, involving the collection and
preparation of suitable training data and the actual training and evaluation
of the acoustic models and language models. The broadcast news domain
was chosen as domain of focus, as this domain has also been extensively
used as a benchmark domain for both international ASR research and SDR.
A complicating factor for ASR in the news domain, is that word usage is
highly variable. As a consequence, besides using large vocabularies, it is
important to adjust these vocabularies regularly, so that they reflect the
content of the news programs well. Therefore, it has been investigated
which word selection strategies are best suited for making these vocabulary
adjustments. Moreover, as dynamic vocabularies require a flexible gener-
ation of accurate word pronunciations, the development of a grapheme-
to-phoneme converter is addressed. Another vocabulary related issue that
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is investigated, stems from a well-known characteristic of the Dutch lan-
guage, word compounding: Dutch words can almost freely be joined to-
gether to form new words. As a result of this phenomenon, the number of
distinct words in Dutch is relatively large, which reduces the coverage of
vocabularies compared to those of the same size of other languages, such
as English, that do not have word compounding. This thesis investigates
whether splitting Dutch compound words could be a remedy for the relat-
ively limited coverage of vocabularies, so that ASR performance could be
improved.

Next to a brief history of SDR research and a review of possible SDR
approaches, this thesis demonstrates the use of a Dutch LVCSR in SDR by
providing an illustrative example of an SDR evaluation given a collection of
Dutch broadcast news shows. It is shown that Dutch speech recognition
can successfully be deployed for content-based retrieval of broadcast news
programs. The experience obtained with the research described in this
thesis, and the experience that will emerge from future research efforts
must contribute to the long-term accessibility of the increasing amount
of information being stored in Dutch multimedia and spoken-word collec-
tions.



Samenvatting (in Dutch)

Met de snelle vooruitgang op het gebied van computersoftware en -hard-
ware blijft de beschikbare opslagcapaciteit maar groeien. Daarom wordt
steeds meer informatie wordt opgeslagen in multimedia- en audiocollecties,
in plaats van enkel en alleen in tekstbestanden. Om (delen van) eenmaal op-
geslagen informatie later opnieuw te kunnen gebruiken of te kunnen raad-
plegen, is het van belang om op de één of andere manier in deze collecties
te kunnen zoeken. Standaard, op tekst gebaseerde zoekmethoden zijn in
principe niet geschikt voor het zoeken in dit soort collecties, omdat de hoe-
veelheid tekstuele informatie, indien beschikbaar, meestal maar beperkt is.
Maar, wanneer voor dit soort collecties spraakherkenning kan worden inge-
zet om spraak om te zetten naar tekst, kunnen de tekstuele representaties
vervolgens doorzocht worden met behulp van de standaard zoektechnie-
ken. Omdat spraakherkenningssystemen voor elk herkend woord exact het
tijdstip kunnen aangeven waarop het woord in de audio voorkomt, wordt
het mogelijk om gericht te zoeken naar spraakfragmenten. Deze manier
van zoeken kan worden aangeduid als spraakgerichte retrieval, in het En-
gels “spoken document retrieval (SDR).”

Voor het maken van tekstuele representaties van multimedia- en audi-
odocumenten maken spraakherkenners doorgaans gebruik van een groot
woordenboek, geschikt voor lopende spraak en onafhankelijk van een en-
kele spreker (in het Engels aangeduid als large vocabulary speaker indepen-
dent continuous speech recognition (LVCSR) systems). Voor het Nederlands
bestond er aan het begin van dit promotieonderzoek echter nog niet zo’n
spraakherkenningssysteem. Omdat het van de grond af opbouwen van zo’n
systeem niet doenlijk was gegeven de beschikbare tijd, werd een bestaande
Engels spraakherkenner, ABBOT, omgezet naar een versie voor het Neder-
lands. Een belangrijk deel van dit proefschrift is gewijd aan deze omzet-
ting, die ondermeer bestond uit het vergaren en prepareren van geschikt
trainingsmateriaal, en het trainen en evalueren van de akoestische model-
len en de taalmodellen. Omdat radio- en televisienieuws wereldwijd wordt
gebruikt in evaluaties van spraakherkenningsonderzoek en onderzoek naar
spraakgerichte retrieval, is ook voor dit proefschrift het nieuwsdomein ge-
kozen als testdomein. Een complicerende factor voor spraakherkenning
in het nieuwsdomein is echter dat het woordgebruik er nogal variabel is.
Daardoor zijn er niet alleen grote woordenboeken nodig, maar moeten deze
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ook regelmatig worden aangepast aan de inhoud van de nieuwsuitzendin-
gen. Dit proefschrift beschrijft daarom welke woordselectieprocedures het
meest geschikt zijn om de woordenboeken te kunnen aanpassen aan de pe-
riode waarop het nieuws betrekking heeft. Omdat ook uitspraakinformatie
hierbij beschikbaar moet zijn, is ook een grafeem-naar-foneem omzetter
ontwikkeld. Een ander onderzoeksthema dat wordt behandeld hangt sa-
men met het feit dat het Nederlands samenstellingen kent: woorden kun-
nen bijna ongelimiteerd aan elkaar worden geplakt om zodoende nieuwe
woorden te creëren. Hierdoor is het aantal verschillende woorden in het
Nederlands relatief groot, waardoor de dekking van woordenboeken min-
der is in vergelijking tot talen zonder samenstellingen, zoals het Engels.
Dit proefschrift behandelt de vraag of het splitsen van samenstellingen een
oplossing kan zijn om dekking van de woordenboeken te vergroten, zodat
de prestaties van de spraakherkenner kunnen worden verbeterd.

Naast een korte geschiedenis van onderzoek naar spraakgerichte retrie-
val en een overzicht van mogelijke benaderingen op dit gebied, behandelt
dit proefschrift de ontwikkeling en toepassing van Nederlandse spraakher-
kenning in spraakgerichte retrieval. Een illustratief voorbeeld laat zien dat
Nederlandse spraakherkenning succesvol kan worden ingezet voor het zoe-
ken in een collectie van televisiejournaals. De ervaringen en de resultaten
die uit dit onderzoek en toekomstig onderzoek volgen, moeten een belang-
rijke bijdrage leveren aan de toekomstige toegankelijkheid van de steeds
maar groeiende hoeveelheid aan informatie die wordt opgeslagen in Neder-
landse multimedia en audiocollecties.
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